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Computationally Efficient Systolic Architecture for
Computing the Discrete Fourier Transform

J. Greg Nash, Senior Member, IEEE

Abstract—A new high-performance systolic architecture for cal-
culating the discrete Fourier transform (DFT) is described which
is based on two levels of transform factorization. One level uses an
index remapping that converts the direct transform into structured
sets of arithmetically simple four-point transforms. Another level
adds a row/column decomposition of the DFT. The architecture
supports transform lengths that are not powers of two or based on
products of coprime numbers. Compared to previous systolic im-
plementations, the architecture is computationally more efficient
and uses less hardware. It provides low latency as well as high
throughput, and can do both one- and two-dimensional DFTs. An
automated computer-aided design tool was used to find latency
and throughput optimal designs that matched the target field pro-
grammable gate array structure and functionality.

Index Terms—Computation, fast algorithms, parallel processing
architectures, systolic and wavefront architectures, transforms.

I. INTRODUCTION

THE discrete Fourier transform (DFT) is of central im-
portance to most domains of signal processing: telecom-

munications (orthogonal frequency division multiplexing for
wireless local area networks), radar (synthetic aperture radar,
pulse compression, range-Doppler imaging), antenna arrays
(frequency domain beamforming), navigation (GPS), acoustics,
seismic analysis (nuclear event detection), speech processing
(spectrograms), biomedical signal analysis (spectral analysis),
multimedia, image processing (X-rays, magnetic resonance
imaging, ultrasound), spectroscopy, and sonar (LOFARgram)
[1], [2].

Since many of these applications are either “real-time” or in-
volve very large data sets, it is not surprising that special purpose
parallel circuitry for computing the DFT has been intensively
studied. Most such circuit implementations to date have been
based on the fast Fourier transform (FFT), using either a fixed
radix or variations with mixed or split radices [3]–[6].
A common characteristic of these circuits is that the number of
samples must be a power of two, which limits the number of
reachable values of and their spacing uniformity. However,
this limitation on is not always a natural choice for the appli-
cation at hand. For example, a recently proposed HDTV trans-
mission standard is based on a number of subcarriers (3780) that
is not a power of two [7]. In this case, a 3780-point FFT circuit

Manuscript received July 15, 2004; revised November 21, 2004. This work
was supported in part by the Defense Advanced Projects Research Agency under
Contracts DAAH01-96-C-R135 and DAAH01-97-C-R107. The associate editor
coordinating the review of this manuscript and approving it for publication was
Dr. Sergios Theodoridis.

The author is with Centar, Los Angeles, CA 90077 USA (e-mail: jgregnash@
centar.net).

Digital Object Identifier 10.1109/TSP.2005.859216

was developed that provided better overall system performance
even though it was slower and used 33% more memory than a
4096 split-radix pipelined FFT circuit. Thus, there is a strong
rationale for developing an efficient, high performance, param-
eterized (scalable) circuit that is suitable for applications in need
of DFT sizes that are not necessarily a power of two.

In Section II, previous work related to relevant parallel com-
putation of the FFT is summarized with particular reference
to systolic implementations. In Section III, a mathematical
framework that decomposes the one-dimensional (1-D) DFT
into four-point transforms is developed and leads to a new ma-
trix-based representation of the 1-D DFT. Section IV provides
a description and analysis of a new direct “base-4” systolic
implementation of the 1-D DFT based on the matrix expres-
sion derived in Section III. In Section V, a block row/column
factorization technique is presented that can be used to in-
crease computationally efficiency while avoiding the need
for a separate transposition step. Throughput and latency are
discussed in Sections VI and VII, which analyze computational
efficiency and compare the base-4 circuit to other systolic and
FFT implementations.

II. RELATED WORK

A variety of systolic array designs have been proposed for the
direct computation of the DFT. Linear arrays have been based on
matrix-vector multiplication [8], [9], Horner’s rule [10]–[13],
RNS arithmetic [14], and four-point DFTs [15]. These designs
offer architectural simplicity and will typically work for any ,
but because they are based on a direct algorithm implementa-
tion of the DFT for which the number of arithmetic operations
per DFT is , they are computationally less efficient for
longer transforms and not directly suited to performing two-di-
mensional (2-D) DFTs.

Alternatively, a 2-D systolic array of size can more
efficiently compute a 1-D DFT with the limitation on that it
be expressed as two cofactors, . In this case the well-
known row/column method can be used to do the transform:
DFTs of length , then an -element twiddle factor multi-
plication (the twiddle multiplication can be avoided if and

are coprime), and finally transforms of length . The
row/column transforms for this architecture are computed di-
rectly, each in time. In this case the number of arithmetic
operations per DFT is reduced from that above to

[16]. These designs have been based on efficient use of
properly interconnected sets of 1-D arrays [17] and index trans-
formations leading to triple matrix products [18]–[23]. While
these 2-D systolic designs are fast and well suited to VLSI im-
plementation, hardware requirements can be prohibitive due to
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the need for having one processing element (PE) per transform
point. Although “partitioning” strategies exist [8], by the time
the number of multipliers are reduced sufficiently, designs ei-
ther no longer possess useful systolic attributes or a complex
and large memory structure is needed for buffering.

Computing efficiency can be further improved if is highly
composite, i.e., . If these factors are coprime,
several architectures based on the prime factor algorithm (PFA)
[24] have been proposed [7], [15], [25], [26], each consisting
of a cascade of “small- ” Winograd FFT modules with com-
mutators in between stages. One such PFA design shows that
computational efficiency is comparable to a Cooley–Tukey type
split-radix design, although latency and memory usage are not
as good [7]. One important disadvantage to such PFA imple-
mentations is the complexity and irregularity of the designs, in
that they require use of several different small FFT modules, in-
dexing circuitry is in general more complicated, and there can
be limitations on handling errors due to finite register lengths
[7]. Also, use of the PFA alone specifically excludes transforms
that are a power of two.

Compared to the architectures above, the base-4 algorithm
has the same multiplicative complexity as the 2-D systolic ar-
rays, but the “constant factor” is 10 less and its circuit im-
plementation uses at least 64 fewer complex multipliers. It
is also much more regular and simple than the PFA-based ar-
chitectures. It can compute the DFT for any -point sequence
divisible by 256, so that more points are reachable compared to
a power of two algorithm and these points are uniformly spaced.
Additionally, it can be used to compute 2-D DFTs as well, and
any base-4 implementation can be programmed to compute any
allowed DFT size as long as memory resources are adequate.

III. BASE-4 DFT MATRIX EXPRESSION

The observation that use of a decimation in frequency and
time leads to a DFT coefficient matrix consisting of a regular
array of 4 4 matrices has been made before in the context of
building an efficient 64-point pipelined FFT [27]. However, that
analysis was restricted to producing matrix expressions for only
two transform sizes ( and ) and its recursive
form best suits a pipelined FFT architecture. The analysis here
makes use of this same coefficient matrix regularity, but from
the point of view of building systolic arrays. This leads to a ma-
trix expression applicable to any valid value of and one that
shows explicitly the role of 4-point transforms. (An alternative
derivation is also possible based on bit-reversing permutation
matrices [28].)

The DFT is defined as

(1)

where are the time-domain input values, are the fre-
quency-domain outputs, and . In matrix terms
(1) can be represented as

(2)

where is a coefficient matrix containing elements
. If can be factored as , then using

the reindexings and with
, , ,

, (1) becomes

(3)

This expression can be considerably simplified by imposing the
restriction that be an integer value so that

. For any particular value of , the
value of the inner parenthesis in (3) can be evaluated
from the dot product

so that (3) becomes

(4)

All the dot product values can be collected in the
matrix by performing the matrix multiplication

(5)

where is an matrix with elements
, is an coefficient matrix with elements

, is an matrix with elements
, is an matrix with

elements , and “ ” means element-by-
element multiply.

In a similar way for a particular , the corresponding
can be calculated from the dot product

(6)

and by collecting the dot products as before, a matrix expression
for calculating is obtained as

(7)
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where is an coefficient matrix with elements
and is an matrix containing

the transform outputs .
The character of (7) is determined largely by the value of

or the “base” ( ) because this sets the reachable
values of and the structure of the coefficient matrices
and . In (7), and contain submatrices

with the form
and due to the periodicity of . Also,
values of are constrained to be integer multiples of , since
it was assumed in (3) that is an integer. Although the
choice of is application dependent, here only “base-4” ( )
designs are considered because this choice provides good archi-
tectures that are arithmetically efficient. This selection results in

and

(8)

where in (8) is the coefficient matrix for a four-point DFT
and also describes a radix-4 decimation in time butterfly. In (7),

can be seen as resulting from a series of 4-point transforms
of a bit-reversed input followed by a twiddle multiplication
and is obtained from summations of the results of 4-point
transforms of . (Even though , the symbol will be used
throughout to emphasize its architectural origin and to avoid
confusion with regular constants.)

By comparing (7) with (2), the computational advantages of
the base-4 form are readily evident. In (7), the matrix products

and involve only addition/subtraction because
the elements of and contain only 1 or , whereas
the product in (2) requires complex multiplications. Also,
the size of the coefficient matrix in (7) is
versus the size of in (2); consequently, the number of
overall direct multiplications in (7) is reduced by compared to
(2). Note that for systolic implementations, a distribution of the
elements and does not impose significant
bandwidth requirements because full complex numbers are not
used.

IV. DIRECT FORM DFT ARCHITECTURE

This section describes two direct form systolic arrays suit-
able for calculating a single DFT based on (7). Since there are a
many systolic designs that can be derived from (7), a mapping
tool, Symbolic Parallel Algorithm Development Environment
(SPADE), was used to find optimal designs [29]. The main con-
straint imposed in making a design choice was that the systolic
array architecture matches that of recent generations of field-
programmable gate arrays (FPGA). FPGAs have uniformly dis-
tributed logic, memory, and routing resources so that circuit per-
formance, area, and power dissipation depend critically on ob-
taining a good match [31], [32]. More details on the mapping

Fig. 1. Two different space-time views of each of two systolic architectures
are shown with their corresponding PE arrays beneath (N = 32). The variable
structures in the space-time view are also shown projected to a constant time
plane. Each variable is labeled according to the input code (9) so that its
position can be seen explicitly. The variable WM has been mapped to the
same locations as Y and is not shown. The variables “IM1” and “IM2” are
intermediate variables created in SPADE to perform running sums associated
with the “add” function in (9). Each PE array consists of a left-hand-side (LHS)
and right-hand-side (RHS) N=b � b PE adder array with an N=b linear array
of multipliers in between.

exercise and use of constraints within SPADE can be found in
[28] and [30].

SPADE found only two unique FPGA-compatible systolic ar-
rays that are throughput and latency optimal, shown in Fig. 1(a)
and (b). The array structures, variable names, and data move-
ment associated with Fig. 1 are best understood by rewriting (7)
using SPADE’s input representation

for j to N/b do
for k to N/b do
Y[j,k]:=WM[j,k]* add

(CM1 [j,i]*X[i,k],i=1..b);
od;
for k to b do
Z[k,j]:=add(CM2[k,i]*Y[j,i],i=1..N/b);

od
od;

where the “add” function is a summation over the index
and the subscript “ ” has been removed. SPADE creates two
new variables from (9), IM CM and
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TABLE I
TRANSFORMATIONS FOR TWO SYSTOLIC ARRAY DESIGNS SHOWN IN FIG. 1

IM CM , which facilitate performing
the addition using a running sum method. The SPADE simulator
was used to verify correct systolic operation of each solution.

For each algorithm variable in (9), SPADE finds an affine
transformation such that , where

is a matrix, is a vector, and is the affine indexing
function for algorithm variable and index set . Here rep-
resents a “mapping” from one index set to another index
set , where the latter index set includes one index repre-
senting time with the remaining indexes representing spatial co-
ordinates. These transformation matrices for each algorithm
variable in (9) are shown in Table I for the designs in Fig. 1. For
example, algorithm variable CM in (9) has an indexing func-
tion

and therefore the space-time transformation for the
systolic array in Fig. 1(a) becomes

CM2

TABLE II
VECTORS [time; x; y] FOR EACH DEPENDENCY IN SOLUTIONS

FIG. 1(A) AND (B)

Computations get mapped to the space-time location of the re-
sult variable in a statement. The projection of the space-time
structure along the time axis produces a systolic array after a
PE is associated with each grid coordinate [Fig. 1 (bottom)].
In addition to the outputs for each of the algorithm vari-
ables, SPADE computes a set of vectors indicating the direc-
tion of data flow between PEs for each dependency in the al-
gorithm (9), and these are shown in Table II. The terminology
“ ” in Table II means that is an argument used to com-
pute . The data flow unit vector is , where each unit
of time corresponds to a PE computation cycle. Data flow direc-
tions are shown only for the PE arrays [Fig. 1 (bottom)]. Note
that the data flow for some dependencies indicates no spatial
( ) movement; this means that that the argument and result
variable remain in the same PE. The combined set of transfor-
mations, data flow vectors, index ranges, and PE computations
completely specify the operation and signal flow graph of the
systolic array. The space-time algorithm structure is best viewed
as it is rotated using a three-dimensional real-time rendering
program found in many graphics programs. This visualization,
along with knowledge of data flow vectors, is a good alterna-
tive to the usual systolic descriptions in terms of data movement
snapshots on a reduced sized problem.

Each of the two array designs is composed of a linear array
of multipliers with a mesh array of adder/subtrac-
tors on each side.1 Consequently, the array scales in only one
direction with the transform size . (In order to avoid confu-
sion with true 2-D systolic arrays that scale in both directions,
it will be referred to as a “linear” array in the remaining text.)
This structure matches directly that of FPGAs with their em-
bedded linear arrays of hardwired multipliers and mesh con-
nected arrays of logic cells on both sides, each cell being com-
posed of logic, a register, and fast adder circuitry; consequently,
this makes FPGA implementations area and routing efficient.
Such an architecture/hardware match is particularly important
because interconnections are the biggest contributor to power
consumption and delay [31], [32] in this technology. The mul-
tipliers generate the products involving WM and the adder/sub-
tractors perform the CM and CM products in (9). The
main difference between the two designs is that in the design of
Fig. 1(a), the input X is in a memory at the edge of the array
and the transform result Z resides internally after processing,
whereas for the design of Fig. 1(b), the input data X is internal
and the output Z is collected in a memory at the edge of the
array.

The corresponding functional operation of each PE is de-
picted in Fig. 2. As can be seen, for each design there are three

1Multipliers, adder/subtractors, memories, and registers operate on complex
data.



4644 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 12, DECEMBER 2005

Fig. 2. PE functional operation for design (a) in Fig. 1(a) and (b) in Fig. 1(b).
The “SWAP” logic block is used to switch real and imaginary parts of X when
multiplying by j and to set the PE for addition or subtraction.

different PE types, one for the LHS adder/subtractor array, one
for the multiplier array, and one for the RHS adder/subtractor
array. Only the multiplier PE has an amount of memory that de-
pends on the transform size; each multiplier PE stores one row
of the matrix WM. All LHS and RHS PEs perform an addi-
tion or subtraction operation and contain nominally two regis-
ters. If a PE input does not come from an adjacent PE output
or a memory structure at the array edge, then that input value is
zero. In both LHS PEs there is a small register that stores one of
the values for CM1 [solution Fig. 1(a)] or CM2 [so-
lution Fig. 1(b)]. In both RHS PEs the coefficient values CM1
and CM2 propagate from PE to PE. The PE function “SWAP”
examines the matrix input from either CM1 or CM2, exchanges
the real and imaginary parts of the other input to the swap func-
tion as necessary, and finally sends this result along with a con-
trol signal “ “ to the adder/subtractor. The variable IM ac-
cumulates the products CM and becomes
the value in (9) of IM1 when it arrives at the multiplier PE. The
variable IM accumulates the products CM and be-
comes the value in (9) at the end of processing. In both
the LHS and RHS arrays, the matrix elements of X and Y prop-
agate unchanged from PE to PE.

The designs in Fig. 1 each have a latency of 2
cycles and a throughput of 1 cycles per DFT. The assign-
ment of the same cycle time to PEs that do addition/subtrac-
tion and to PEs that do multiplication is consistent because in
the FPGA target hardware the multipliers are hardwired. Con-
sequently, their speed approximately matches that of the config-
urable logic used to perform addition/subtraction.

V. ROW/COLUMN FACTORIZATION

A. Introduction

Although the designs in Fig. 1(a) and (b) possess arithmetic
and architectural efficiencies compared to other linear systolic
arrays, they are still direct DFT implementations because the

number of computations is . To reduce the overall
number of computations, another factorization is
applied to the computation using the traditional row/column
approach. This factorization requires computation of two sets
of DFTs, transforms of length (referred to as “column”
transforms), and transforms of length (referred to as
“row” transforms). Each set of transforms is computed using
the direct base-4 architecture described in Section IV. In be-
tween column and row transforms, it is necessary to multiply
each of the points by a corresponding twiddle factor ,

, , using the multiplier
PE of Fig. 2 [22]. (Without the twiddle multiplication, a 2-D
DFT is performed.) The approach followed here will be to use
just one systolic array to do the column transforms, the row
transforms, and the twiddle multiplications. This constraint
leads to several architectural options, two of which are de-
scribed below.

B. Combined Architecture for Square Factorizations
( )

Both the systolic designs from Fig. 1 are necessary for this
factorization: that in Fig. 1(a) for the column transforms and
that in Fig. 1(b) for the row transforms. In this way the column
stage inputs X and row stage outputs Z are appropriately ex-
ternal to the array to facilitate I/O. Also, the column stage PE
outputs are internal just as are the row stage inputs as seen in
Fig. 1(a) and (b), a mapping which permits the row stage to im-
mediately follow the column stage without requiring any extra
internal data shuffling. The main architectural addition to a com-
bined array would be a problem size dependent amount of in-
ternal memory with which to store the column stage DFT results
and coefficient storage in each multiplier PE for the twiddle co-
efficients. The positioning and sequencing of the DFTs are best
understood from the space-time view shown in Fig. 3 for a com-
putation with . In this example, each of the
two stages of the computation computes 64 successive DFTs,
although only two DFT iterations are shown for each of the two
stages. Here it can be seen that successive column stage and row
stage DFT iterations can be directly and efficiently “stacked”
on top of each other in time to geometrically fill the space-time
computing volume.

A complete architecture that includes column, twiddle mul-
tiplication, and row stage operations will then be a combina-
tion of the two designs in Fig. 1. Because the array structure
for both designs is the same and each PE requires very similar
functionality, only a small amount of additional circuitry for PE
data routing and control is necessary. However, it is important
that overall data organization and flow for the combined archi-
tectures be consistent. For example, the value of an element of
CM1 inside a particular PE in Fig. 1(a) must be the same as the
element of CM2 in the corresponding PE in Fig. 1(b). Although
the two architectures in Fig. 1 are unique, SPADE found 16 dif-
ferent variations of each, equivalent to ways of using the same
architecture to do the same computation but with different order-
ings and placement of the variables involved. The two particular
choices of transformations and dependence vectors in Tables I
and II were chosen to provide the appropriate “match” of data
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Fig. 3. SPADE generated space-time view of successively “stacked” DFT
iterations for performing row/column factorization, where N = 4096 and
N = N = 64. Only two of 64 DFT iterations each for column transforms
(“bottom” two iterations) and row transforms (“top” two iterations) are shown.
(The twiddle multiplications byW , i = 0; 1 . . .N �1,k = 0; 1 . . .N �1

are not shown, as SPADE does not generate these.)

structures in order that the combined design places data in con-
sistent PE locations.

The biggest issue in combining the two architectures of Fig. 1
is that of accommodating the need for bidirectional connections
between PEs in the “east-west” direction. This is especially true
for FPGA target hardware, which in general provides little sup-
port for such structures. An alternative approach based on a
modified toroidal structure allows one way east-west PE con-
nections and still maintains locality as shown in Fig. 4. This
figure shows that the PEs at each end of both the LHS and RHS
arrays of Fig. 1(a) and (b) are directly connected to the mul-
tiplier PE through two multiplexers. The path labeled “1” per-
forms the east-west connections for the Fig. 1(a) design and the
path labeled “2” does the same for the Fig. 1(b) design. In this
combined design, columns of RHS/LHS PEs that are furthest
from the multiplier PE in Fig. 1(a) become logically and physi-
cally adjacent the multiplier PE in the design Fig. 1(b).

In Fig. 4, the memory elements that are necessary to store the
values of the column transforms and twiddle multiplications are
shown explicitly. The aggregate memory required in the RHS
array is the number of transform points with each of the

RHS PEs containing room for elements. For
the multiplier PE, the attached memory needs to accommodate
WM and the twiddle coefficients , ,

. Because these PE memories are uniformly
distributed, they can be implemented using FPGA embedded
memories and their relatively small size makes them inherently
fast and low power.

The data path within the combined architecture of Fig. 4 that
is used to do the twiddle multiplication in between the row and

Fig. 4. Architecture created by combination of array and interconnection
elements from Fig. 1(a) and (b). Only the bottom two PE rows of the LHS and
RHS arrays are shown. Memory elements are labeled “M.” Array inputs X at
different times � are shown for a column DFT of length M = N , along with
corresponding inputs for CM2.

Fig. 5. Data path from Fig. 4 used during the twiddle updates in between
column and row DFTs. Here, the LHS array multiplexer uses path “2,” while
that on the RHS uses path “1.” (Only the bottom two PE rows of the LHS and
RHS arrays are shown.)

column transforms is shown in Fig. 5. Here it can be seen that
only the RHS array is used to do this update. It is natural for the
multiplier PE to be constructed as a stage pipeline, matching
the pipeline stages of the RHS array PEs. In this way every
four cycles a new set of four twiddle-updated coefficients are
written while a new set of coefficients to be updated are read
(assuming memories in the RHS array are dual ported). The total
computation time for this twiddle step using the multiplier
PEs is then cycles.

C. Matrix Transpose

In the above discussion, it has been assumed that each row
DFT input X is available in the correct format prior to the row
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stage DFTs. However, after the sequence of column DFTs, the
outputs [Z in RHS array of Fig. 1(a)] are not suitably formatted
to begin the row DFTs. This problem is illustrated in Fig. 6(a),
which shows that the position in the RHS array [Fig. 1(a)] of
transform coefficient outputs Z for a sequence of 32 32-point
column transforms is the same for all 32 DFTs. Therefore, each
PE stores the same coefficient number for each of the DFTs.
However, each row DFT requires the same coefficient number
from each of the column DFTs; therefore the desired data format
for the sequence of inputs [X in RHS array of Fig. 1(b)] to the
row transforms is as shown in Fig. 6(b). This formatting issue
is well known and is usually dealt with by performing a data
transposition; however, such an additional step would consider-
ably reduce the overall throughput. Alternatively, here it is pos-
sible to do the transposition “on-the-fly” during the course of the
column DFTs. This can be accomplished by a systolic shift of
the rows or columns of the matrices CM1, CM2, and WM as the
DFTs are performed. For example, if the rows of an argument
matrix in the product are circularly shifted down,
then the rows of the result are shifted down the same way.

The concept of on-the-fly transposition during the column
DFT stage is best demonstrated by altering the code in (9) to
include successive column DFTs of size with the matrix
shift steps made explicit to give

for n to N4 do
for j to N3/b do

for k to N3/b do
Y[j,k]:=WM[j,k]*add
(CM1[j,i]*X[n,i,k],i=1..b)

od;
for k to b do
Z[n,k,j]:=add
(CM2[k,i]*Y[j,i],i=1..N3/b)

od;
od;
WM := matrix_shift(WM, “down”);
CM1 := matrix_shift(CM1, “down”);
if n mod(N4/4)=0 then

CM2 := matrix_shift(CM2, “down”)
fi;

od; (10)

where the procedure “ ” does a circular shift on
the argument matrices in the direction indicated (there are sev-
eral straightforward ways to implement circular shifts in hard-
ware). Here each use of the procedure on WM and CM1 causes
a shift of Z output by one column position to the right, and on
CM2 causes the rows of Z to be shifted downward by one. After
all column stage DFTs are completed, the rotated matrices
have returned to their original position. (The SPADE simulator
was used to verify correct systolic operations with these shifts
incorporated for both column and row stage transforms.) The
outputs, using this shift scheme for a sequence of 32 32-point
column stage DFTs ( ), are then as shown in
Fig. 7. It demonstrates that the positions of the output coeffi-
cients obtained from the column stage DFTs change for each

Fig. 6. (a) Locations of DFT coefficient numbers after each 32-point column
DFT in PEs forming the RHS array of Fig. 1(a) (coefficients are numbered 1
to 32 and the arrays shown represent the successive outputs Z ). (b) Desired
DFT coefficient number locations in PEs of the RHS array in Fig. 1(b) prior to
starting row stage DFTs.

Fig. 7. PE locations [Z in RHS array in Fig. 1(a)] of successive 32-point
column stage DFT coefficient outputs after matrix shifts shown in (10). Each
RHS PE has 32 memory storage locations to store these results. The same
memory location in all RHS PEs correspond to a plane of data.

of the DFTs in a way that all column coefficients are now
available in desired PE locations shown in Fig. 6(b); however,
each coefficient is stored in a different RHS memory location
as indicated by the memory “planes” shown in Fig. 7. There-
fore, each PE will need a different memory address to access
the column element it is required to supply for the first row
DFT; however, each subsequent value can be obtained by just
incrementing this address by “1” modulo the memory size .
During the sequence of row stage DFTs, a similar set of matrix
rotations as those in (10) is used to return each of the DFT
outputs to the usual bit reversed form.

D. Combined Architecture for Nonsquare Factorizations
( )

For this more general factorization, the array topologies from
Fig. 1(a) and (b) cannot be used as before because the column
and row DFT transform sizes are different. A variety of ap-
proaches are possible that can accommodate this case and a
choice depends on performance requirements, transform sizes,
and target technologies. Here a design is described for which
regularity and modularity are the architectural priorities. As-
suming the , the basic approach is to use the Fig. 1(a)
architecture with length to perform the column stage
DFT transforms each of length as described in Section V-B.
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Fig. 8. PE locations [Z in RHS array in Fig. 1(a)] of successive 32-point
column DFT coefficient outputs without matrix rotations that move data in
north-south direction. The same memory location in all RHS PEs corresponds
to a plane of output data.

Then for the row stage transforms the length array struc-
ture is used to emulate the architecture of Fig. 1(b) with length

. This requires adding PE memory to the LHS array if se-
quentially ordered output is desired and requires modified pro-
cessing to perform the row transforms each of length .
The modified processing uses different PE rows of the length

array to each independently execute of the row stage
DFTs. The details of how this is accomplished are described in
the remainder of this section.

In Section V-C, it was shown that on-the-fly permutations
could be used to distribute input data elements of each row DFT
uniformly across the RHS of the array in Fig. 1(b). Alternatively,
inputs for a row DFT could be distributed so that they reside
only within one of the east-west PE rows as shown in
Fig. 8. In this case since there are row DFTs that need to
be performed and there are PE rows, each RHS PE row
will contain inputs for different row DFTs. For example, from
Fig. 8, it can be seen that the first PE row will have transform
input data for rows 1, 9, 17, and 25 (assuming ).

With all DFT row data confined to specific PE rows, each PE
row can function separately as a linear systolic “subarray” to
perform the row DFTs stored there. Each linear systolic sub-
array can be thought of as being created by projecting an array
like that in Fig. 1(b) of length along the north-south axis.
The linear subarray shown in Fig. 9(a) then emulates the vir-
tual array of the length as shown in Fig. 9(b). Here, at
any time the PEs in the linear subarray [Fig. 9(a)] perform the
same operations as the virtual PEs [Fig. 9(b)] that are along the
dashed line corresponding to that value of . In this case pro-
cessing starts ( ) on the far RHS PE in the linear subarray
[Fig. 9(a)] and corresponds the operation of the lower right PE
in the array of Fig. 9(b). By time the entire linear subarray
of Fig. 9(a) will be active. At time an element of Z will
have been generated by the LHS PE adjacent to the multiplier
PE and stored in the memory of Fig. 9(a). Each time cycle after
that another element of Z will be generated by another LHS PE.

The sequence of operations starts in the computation plane
just one time unit above and parallel to the X and CM2 planes in
Fig. 1(b). At time the next plane above this one is started
in the far RHS PE of Fig. 9(a) and computations continue using
a new row of coefficients from the edge memory CM1. The
computations continue in this way executing plane-by-plane the

Fig. 9. (a) Linear systolic subarray corresponding to one PE row of
architecture from Fig. 1(a) and (b), the virtual array of Fig. 1(b) which it
emulates. The dashed lines specify which virtual PEs of array (b) are active in
linear subarray (a) at time � .

space-time computations shown in Fig. 1(b) until the DFT is
completed. For example the linear subarray corresponding to
PE row 1 of the architecture in Fig. 1(a) (top row in Fig. 8) will
successively perform row DFTs number 1, 9, 17, and 25 (as-
suming ). The second PE row of the length
array will start its operation as a linear subarray one cycle after
the first linear subarray and will compute row DFTs 2, 10, 18,
26, and so forth until all row stage DFTs have been com-
pleted. The transformations in Tables I and II plus the ordering
shown in Fig. 9(b) completely define the operation of each of
the linear systolic subarrays in the combined architecture.
Additionally, the same volumes of space-time are used as for
the architecture of Section V-B.

The main architectural change from the array structure shown
in Fig. 4 is that each LHS linear subarray must now have its
own output memories as shown in Fig. 9(a), assuming an or-
dered serial output is desired. The architectural advantage of
this structure compared to that described previously ( )
is that the single Z memory shown in Fig. 1(b) has now been
distributed among the LHS row PE slices, making the structure
more modular and hence easier to scale and partition. This also
makes the architecture more suited to FPGA hardware, which
typically has few large memories but an abundance of small
memory options. The individual PE architectures of the linear
subarray are shown in Fig. 10 and are almost identical to than in
Fig. 2(b), the difference being that IM2 accumulates its result in
the same PE. In summary the combined array structure consists
of an array of length that does the column transforms as
shown in Fig. 1(a), but uses the PE rows as linear
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Fig. 10. PE functional operation for linear subarray design in Fig. 9(a).

Fig. 11. An example of buffering used to achieve reordering of input data
assuming input data arrives serially and row-wise from the source array shown.
Each input row is routed to one of four banks of input memory feeding the
four PE columns depending upon which of the four quadrants that row resides.
Each data point in a row is written into a memory bank with a stride of N =4.
When reading from these banks during column stage operations, input data is
routed to buffer memories forming a ping-pong style input for some banks. For
a particular column in the input data array above, the ordering of data out of
the four memory banks to the LHS array is shown in Fig. 4. Each of the four
memory banks is of size N=4.

subarrays each emulating the operations of a Fig. 1(b) length
array of length .

For DSP-based applications requiring continuous in-order se-
rial input and output, the base-4 circuit needs reordering buffers
at both input and output. The simplest such memory would be
a traditional “ping/pong” memory buffer arrangement (Fig. 11).
In this case during the column stage computation, the LHS array
would read input from a memory of size , while new serial
input data is being written to other buffers of total size with

. Because the relative time associated with reading input
during column stage computation varies depending on the ratio

, will vary from 0.4 to 1.0. Output data can be written
into the LHS PE memories (Fig. 10) so that the aggregate output
memory forms an array and the transform result (stored
as elements) can be read out sequentially in column
major order. More specifically, the memory in each LHS PE row
contains four rows of this output array, and the memory
in each LHS PE column contains columns of this output
array. The buffering is necessary because four columns of the

output array are being written simultaneously to the LHS mem-
ories, but can only be read out sequentially. Register transfer
level (RTL) simulations have been performed to verify this con-
tinuous serial I/O model on DFT sizes 256 to 8192 points using
input buffers that vary from 1.5 to 2 and an output buffer of
fixed size .

E. Accuracy and Partitioning

Given the target FPGA hardware and base-4 architecture, the
most natural strategy for providing suitable accuracy is to use
a block floating point strategy. Today’s embedded multiplier
FPGA hardware is typically pipelined and able to run at full
clock speeds to support any mantissa length up to 18 bits, which
would be adequate precision for most applications. Because the
array structures in Fig. 1 are linear and regular, it is possible to
implement a block floating point capability in a way that doesn’t
involve any global or problem-size dependent routing lines. This
capability arises because all of the processing can be done in
the east-west direction even though the array structure scales
with problem size along the north-south axis. For example, in
the architecture for (Section V-D) all the data move-
ment and processing during the row stage computation is done
in the linear subarrays independently. Also, in the column pro-
cessing stage the only north-south activity is the movement of
X up the array and it propagates unchanged. Therefore, these
linear subarrays can each have their own independent identical
block floating point circuitry.

For the same reasons partitioning is very straightforward
as a way to match the throughput of an application with the
throughput of the underlying architecture without altering
clock rates. Because only the input data X flows up unmodified
through the LHS array, any horizontal section of the entire
structure is capable of doing any of the processing. For ex-
ample, half the array in Fig. 1 could be used with two separate
passes of the input data X to do the column DFTs. It would
only be necessary to make sure memory sizes are adequate and
that the correct WM coefficients are used. Consequently, any
array size can be used to do any allowed transform size given
adequate memory resources.

VI. THROUGHPUT AND LATENCY

Throughput can be determined from the sum of the compo-
nent operations: column DFTs, twiddle multiplication, and row
DFTs. In addition Fig. 3 shows that there is a processing delay
associated with the switch from solution of Fig. 1(a) and (b).
This delay in switching from column to row processing can be
seen from Fig. 3 is twice the time to traverse the east-west di-
rection of the array or . As noted in Section IV, the throughput
of the direct base-4 implementation of a DFT is 1, as re-
flected by the SPADE generated stacked DFTs in the space-time
diagram of Fig. 3. However, this solution was obtained with the
constraint that there be no overlap in space-time of input planes
with regions of computation, specifically the polytopes associ-
ated with IM1 and IM2 in (9). This constraint was added only to
clearly delineate regions of space-time associated with the dif-
ferent variables in (9). If this constraint is eliminated, then no
“time slot” is necessary to accommodate the CM [Fig. 1(a)]
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or CM [Fig. 1(b)] planes and the throughput becomes
instead of . Since the combined processing requires
column DFTs of length and row DFTs of length , the
overall throughput Thrpt expressed as cycles per transform is

Thrpt

(11)

for the architecture with (Section V-B). The
throughput for the architecture with ( ),
(Section V-D) is the same, except for the row stage DFTs.
Since is the throughput for computing a single row stage
DFT with PE rows, using just a single PE row to do the
computation will require cycles. Therefore, with each
PE row computing DFTs

Thrpt

(12)

The throughput during the column and row DFTs is optimal
because the speedup over a serial computation of (9) is equal to
the number of PE array elements. For example, in (9) there are

multiplications associated with the column stage; so
with multiplier PEs, the optimal throughput is
the same value seen in (11) and (12). Similarly, in (9) there
are a total of column DFT additions when imple-
mented as a running sum, so the optimal throughput with LHS
and RHS arrays of adder/subtractors each of size is
again and similarly for the design of Section V-D.
These optimal throughputs are to be expected since each point
within space-time bounds of the mapped variables performs a
computation each cycle. The throughput associated with twiddle
multiplications is also optimal because, the multiplier PEs op-
erate at 100% efficiency after the initial stage pipeline delay.

The computational latency is the number of clock cycles
it takes to do the first in a series of identical DFT calculations
assuming input data is available in the required format. Conse-
quently, it is obtained by adding to the throughput the number of
cycles necessary to “fill” the pipeline. From Fig. 1(a) it can be
seen that the maximum length data path in the array is the time
to travel the length of the array ( cycles). Consequently

Thrpt (13)

If input data is only available in serial order, one data element
per clock cycle, then there would be an additional latency delay
of at least 3 4 because the circuit needs access to element
3 4 at the beginning of computation.

The throughputs and latencies for a variety of transform sizes
calculated using (12) and (13) are shown in Table III, along with

TABLE III
THROUGHPUT, COMPUTATIONAL LATENCY AND HARDWARE

USED IN BASE-4 CIRCUIT

the corresponding hardware used. A nonpower-of-two 2816-
point transform for which is included as well. An
RTL behavioral simulation was performed to verify to within a
few control dependent clock cycles all values in the Table III. A
similar RTL simulation was performed for a 1024-point trans-
form based on the combined array architecture with
described in Section V-B to verify (11).

VII. COMPARISONS

A. Computational Efficiency

As explained in Section II, a variety of systolic array de-
signs, characterized by use of uniform arrays of PEs, have been
proposed for computation of the DFT. The most common are
of two types, linear arrays that require multiplications
and the more computationally efficient 2-D arrays that require

multiplications (typically
[19], [22]) based on use of a row/column factorization

. The base-4 design has the same asymptotic complexity
as the 2-D arrays, but the “constant” factor is much smaller. This
can be seen from (7) which shows that the number of multiplica-
tions for a single base-4 DFT is equal to the number of elements
of . For the column DFTs is and for
the row transforms is , so the ratio of 2-D
systolic to base-4 multiplications, including the twiddle multi-
plication, is

which is always greater than ten and asymptotically approaches
16. Similarly, there are additions in a 2-D
systolic computation [19] and array additions for a
DFT of size for each multiplication by . Consequently
the ratio of 2-D systolic to base-4 additions is

which is approximately equal to two.

B. Circuit Architecture Comparisons

Table IV provides a parameterized list of some of the im-
portant implementation characteristics of a variety of parallel
circuits for computing the DFT. Because previous systolic
architectures typically require one multiplier-adder combina-
tion per transform point, the hardware requirements for all but
the smallest transforms are prohibitive. However, the base-4
design needs only 4 multipliers and consequently, since
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TABLE IV
COMPARISON OF IMPLEMENTATION PARAMETERS FOR LINEAR SYSTOLIC, 2-D SYSTOLIC, BASE-4, AND PIPELINED FFT CIRCUITS (n IS AN INTEGER > 0). THE

NUMBER OF SPLIT-RADIX FFT COMPLEX MULTIPLICATIONS COMES FROM [33]

and , the base-4 design will always
use at least 64 fewer multipliers than previous 2-D systolic
arrays. Similarly, with adders (Fig. 1), ,
and therefore the base-4 design will always use at least 8
fewer adders than 2-D systolic arrays. Since there are 8 more
adders than multipliers in the base-4 design, the granularity of
the design is inherently finer and therefore there is a potential
for easier design, simpler partitioning and reduced wiring issues
compared to 2-D systolic arrays, especially in the context of
FPGA hardware. Also, linear and 2-D systolic arrays typically
require 2 words for data in uniformly distributed PE registers,
whereas of the total 5 words of base-4 PE memory
is of the more desirable RAM form. Finally, the computational
latency of the base-4 design is inherently low because it uses a
block-based systolic approach that reuses the same low latency
architecture to do all the row and column DFTs.

Also included as a measure of relative circuit efficiency
is a recent split-radix pipelined FFT that has multiplicative
complexity advantages over other fixed radix and mixed radix
pipelined FFT implementations [4]. Compared to a base-4
design for , the pipelined FFT has worse
throughput and latency, but uses 50% fewer multipliers and
performs fewer multiplications. Circuits based on the
PFA are not included in Table IV since there are few of them
and they are not inherently easy to parameterize [7], [25], [26].

The data memory values shown in Table IV do not include
input or output buffers for data reordering, as their use varies
with application. For DSP-based applications requiring contin-
uous in-order serial input and output, the base-4 and 2-D sys-
tolic circuits need reordering buffers at both input and output,
whereas a pipelined FFT can be designed needing only an output
buffer [34].

VIII. CONCLUSION

A parallel base-4 architecture is described that provides
computationally efficient, high performance execution of the
DFT for all transform sizes which are divisible by 256. Past
systolic DFT implementations are significantly less computa-
tionally efficient and require much more hardware in circuit
implementations. Previously reported pipelined FFTs are lim-
ited to values of that are a power of two and pipelined PFA
approaches are limited to values of that are composite with
coprime factors. Additionally, the fine-grained, adder-centric,

regular, locally connected (single global clock), linear base-4
structure makes efficacious use of the underlying target FPGA
hardware and will also minimize logic delays and associated
power consumption in the FPGA routing network. A good
FPGA match is expected to provide higher clock rates than
more coarse grained pipelined FFT/PFA designs. The base-4
architecture also supports execution of 2-D DFTs using the
same circuit and its modularity allows simple partitioning
strategies to match architecture/application throughputs. Other
base-4 FFT designs are possible and these depend on the ap-
plication requirements and target hardware. A timing analysis
of a partially populated 16-bit fixed point base-4 circuit imple-
mented using a recent generation FPGA chip (Altera Stratix,
speed grade 3) showed that a clock speed of 300 MHz could
be expected, leading to a 1024-point complex DFT throughput
of approximately 2.2 , a number that compares favorably
with recent FFT hardware, e.g., 34 s for a radix- design [6].
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