
Presented at the 2014 International Conference on Computing, Networking and Communications (ICNC), CNC Workshop (ICNC'14 - Workshops - CNC),

Honolulu, HI, Feb 2014.
(www.centar.net)

Copyright IEEE 2014

J. Greg Nash, Senior Member, IEEE
Centar LLC

Los Angeles, CA USA

jgregnash@centar.net

Abstract—A small, fine-grained systolic FFT architecture is

described that is fast, programmable, can do non-power-of-two

DFTs, and provides a higher signal-to-noise ratio for a given

fixed-point word length than traditional block floating point

approaches. To demonstrate the basic architecture, several

designs were implemented using 65nm FPGA technology: (1)

fixed-size 256-point and 1024-point circuits; (2) a power-of-two

variable FFT circuit for LTE OFDM; and (3) a non-power-of-

two circuit for LTE SC-FDMA DFT computations, that is

programmed by entering parameter values into a single ROM

memory. These three circuits demonstrate >37%, 62% and

>100% higher throughputs than the other pipelined and

memory-based FFTs to which they are compared. These circuits

run at clocks speeds as high as 566 MHz, 46% higher than any

other circuit in the comparisons. Finally, the architecture

provides scalable throughput by increasing the array size.

Index Terms—Fast Fourier transform, discrete Fourier

transform, systolic array, FPGA, pipelined FFT, non-power-of-

two.

I. INTRODUCTION

The discrete Fourier transform (DFT) is one of the most

prominent signal processing algorithms. In particular it is has

been proposed for use in a variety of wireless transmission

protocols, as for example WiMax, LTE and DVB-T2. The

protocols are complex and place significant demands on the

DFT circuitry due to the need for

 run-time choice of DFT sizes (scalable OFDM)

 larger transform sizes (LTE: 2K points; DVB: 32K points)

 high throughputs as a result of MIMO data streams and

carrier aggregation (LTE Advanced 100MHz bandwidths)

 non-power-of-two DFTs (SC-FDMA: 35 transform sizes;

digital radio mondiale: 288, 256, 176,112 points)

Since these applications are real-time, special purpose parallel

circuitry, coupled with fast algorithms for computing the DFT,

is essential.

Most high performance 1-D FFT designs fall into one of

two categories: either delay feedback (DF) and delay

commutator (DC) ([1], [2]) pipelined designs or serial

memory-based designs [3]. Pipelined designs are

computationally efficient and fast, but lack programmability

and are typically intended only for power-of-two-transforms.

Memory-based designs are more flexible, but considerable

complexity is required to achieve high speed and they are not

 This work was supported in part by the National Science Foundation

under Grant IIP-0848285.

inherently scalable. "Systolic" array (SA) designs have also

been proposed for wireless fixed-size DFT computations

[4][5] and are attractive because of their simplicity, regularity,

scalability, locality of interconnections and suitability for non-

power-of-two transforms. However, they require substantial

hardware, ~N real multipliers, where N is the transform size.

In contrast the “base-b” architecture described here is also a

SA (memory-based) with the beneficial attributes listed above;

however, it is far smaller in size than traditional SAs because

hardware usage is comparable to that of traditional FFT

implementations, with which it also shares computational

efficiencies. Additionally, it is programmable, can do non-

power-of-two DFT sizes, provides higher throughput

implementations, supports cyclic prefix insertion and includes

a low overhead hybrid floating-point feature that increases

dynamic range for a given fixed-point word size.

The SA memory-based design is architecturally very

different than traditional memory-based approaches as can be

seen in Fig. 1. Here a traditional high-performance memory-

based design (Fig. 1(a)) contains a plurality of large arithmetic

units, where typically butterfly computations are performed,

connected to a similar plurality of memories. The goal in such

designs is to sequence data to/from the memories in such a

way that data I/O rates are maximized. Alternatively, the SA

does the same thing, but at a finer level of granularity. From

Fig. 1(b) the SA is seen to consist of many very small

processing elements (PEs), each containing multiplier/adders

and a few registers. Each PE reads and writes to a typically

small “simple” dual-port memory and aggregate bandwidth is

limited only by the number of PEs. The well-known

scalability of systolic algorithms [6] means that high

bandwidths, and thus performance, are achieved by simply

increasing the array size. It is much more difficult to do the

same for traditional memory based designs.

Arithmetic Unit

Arithmetic Unit

Arithmetic Unit...

Arithmetic Unit

Memory

Memory

Memory...

Memory

Address Unit

Data

 Control
Data

 Control

(a) (b)

PE

M

PE

M

PE

M

...

PE

M

PE

M

PE

M

PE

M

PE

M

PE

M

PE

M

PE

M

PE

M

PE

M

PE

M

PE

M

PE

M

...

...

...

...

...

...

...

...

Fig. 1(a). Traditional memory-based FFT architecture and (b) fine-grained

SA equivalent.

Although not shown in Fig. 1(b), each PE is locally

connected to its neighbors which keeps interconnections short.

This is particularly important as process technologies migrate

to 22nm sizes and routing delays become an increasingly

High-Throughput Programmable Systolic Array

FFT Architecture and FPGA Implementations

dominant part of the critical path. A good example of this

trend are the Tabula ABAX
2
 FPGAs with their new

"Spacetime" architecture which adds a virtual vertical

dimension to their LUT fabric. In this case finding localized

circuit compilations will be essential to efficient use of such

devices. The base-b architecture presented here was actually

designed using a true space-time mapping tool that generates

latency optimal solutions [7], so that implementations are

fundamentally localized. Therefore, with good place-and-route

compilers, high speeds are easily obtainable along with

potentially lower power due to reduced interconnection usage.

For example the power-of-two circuits presented here all run

with worst-case clock speeds >500MHz, using 65nm FPGA

technology, speeds which are higher than any other similar

FPGA FFT circuits of which we are aware and approach the

clock speed limits of the FPGA fabric.

Note that we have previously implemented a couple of

base-4 concept demonstration, fixed-size FFT circuits in

FPGA technology [8]; however, the circuit architecture

described here is much improved. In particular, that in [8] (1)

did not employ the simple PE-memory processing flow shown

Fig. 1(b); (2) required an entirely separate processing step and

support hardware to perform the twiddle operations (Fig. 1 in

[8]), which has been eliminated here; (3) used inefficient PE

memory management schemes, replaced here by “in-place”

RAM read/write operations and agglomeration of output

buffers, reducing the number of embedded PE RAMs by more

than a factor of 2; (4) utilized some fixed scaling, whereas

here there is no fixed scaling; and (5) was constrained to the

fixed, non-programmable base-b processing described in [7],

whereas here additional architectural support for

programmability has been added.

The focus in this paper is on FPGA-based implementations,

because of their rapidly growing use in semiconductor

applications. Modern FPGAs have large numbers of

embedded multipliers (as many as 868 on a single FPGA in

the Altera Stratix III series) and embedded memories, which

result in very different design tradeoffs compared to ASIC

designs. Therefore, because FPGA chips are expensive, the

main design objective here is to minimize the use of LUT

logic and registers, while maximizing performance.

The algorithmic basis for the architecture is summarized in

Section II-A, followed by a simplified architectural

description in Section II-B. Section III introduces a very

general implementation scheme, followed by several DFT

implementation examples: fixed-size power-of-two circuits in

Section IV-B; a variable power-of-two circuit in Section IV-C;

and a non-power-of-two circuit in Section IV-D. (Each design

was chosen with wireless applications in mind.) Section V

concludes with a summary of base-b architectural features.

II. ARCHITECTURE

A. Algorithmic Basis

The overall architecture is based on two levels of

factorization [7] of the transform size N starting with

N=N3*N4.
1
 Here the N3xN4 “DFT matrix” X contains input

samples xi that are arranged x1,x2,...,xN4 on row 1,

xN4+1,xN4+2,...,x2*N4, on row 2, etc. Using the traditional

“row/column” approach to compute the DFT, this

factorization requires computation of two sets of smaller

DFTs, N4 transforms of length N3 (referred to as “column”

DFTs) and N3 transforms of length N4 (referred to as “row”

DFTs). In between column and row transforms it is necessary

to multiply each of the N points by the usual twiddle factor,

-

 i=0,1,..,N3-1, k=0,1,..N4-1.

A second level of factorization [7] can be used in

computing an M-length row or column DFT based on the

decomposition M=N1*N2=N1*b, leading to

 (1)

where “b” refers to the value of N2 or “base”. is an input

data matrix of bxN1 points and is a DFT output matrix of

bxN1 points. Also, is a small N1 x N1 coefficient matrix

used in an element-by-element multiply and are

arrays of radix-b butterfly matrices.

B. Architecture

An abstraction of the architecture (Fig. 2) shows that it

consists of two N3/bxb processing element (PE) SAs

connected by a N3/bx1 array of complex multipliers ([7]).

Each PE in the LHS and RHS SAs contains a few registers,

multiplexors, a complex multiply/adder, and miscellaneous

logic. Additionally, each PE in each SA array has access to a

small simple dual-port RAM, to which RHS PEs write and

LHS PEs read. The systolic matrix-matrix multiplications are

carried out using well known mappings of signal flow graphs

to PE arrays [6]. FFT input data in Xb are all fixed-point n-bit

2’s complement words. The column and row DFT stages are

described below based on (1).

Stage 1: Column DFTs

An input buffer feeds the LHS SA with columns Xbci,

i=1..N4, of the N3xN4 DFT matrix, and each Xbci is organized as

a bxN1c matrix (M=N3=b*N1c). Also, each PE in the LHS SA

contains an element of the matrix CM1. The systolic matrix-

matrix multiplication result CM1 Xbci then flows out of the LHS

SA through the multiplier array shown in Fig. 2 where the

coefficient multiplication by WM=WN3, stored in ROM,

produces
 . A second systolic matrix-matrix multiplication

is then performed by the RHS SA with inputs
 from the left

and CM2 from the bottom (one CM2 matrix per column Xbci),

producing the results Zbci, which are stored in a distributed

fashion in the RHS PE RAMs and become the Xbri for row

DFTs after the twiddle multiplication by .

Stage 2: Row DFTs

The processing in this step when based on (1) with

M=N4=b*N1r is identical to that for the column DFTs with two

exceptions. First, there is a juxtaposition of the CM1 values

with the Xbri row inputs. In this case the row Xbri values are

1 Notation follows that in [7] to maintain consistency.

retrieved from the LHS SA PE internal RAMs, while the CM1

values now flow into the LHS SA from the bottom. Second,

the Zbri FFT outputs are stored in a separate RAM output

buffer if normal order data output is desired.

Fig. 2. Systolic processing flow for column and row DFTs. Subscript “c” and

“r” refer to computing column and row DFTs of the N3xN4 DFT matrix.

III. IMPLEMENTATION

A. Introduction

The actual base-b circuit implementation is a direct

mapping of the architecture shown in stage 1 of Fig. 2, i.e., the

circuit contains the three array structures with distributed

internal RAMs along with integrated input and output buffers

if normal order data output is desired. However, the mapping

of the row DFT operations in stage 2 of Fig. 2 onto this

hardware is not direct and is described fully in Section V-D of

[7].

A more detailed view of the circuit hardware is provided in

Fig. 3, which shows the flow of Xb in one “PE row”. A PE

row contains one row each from the LHS and RHS SAs

including the multiplier in between the two SAs. The

particular PE row shown is the bottom row #1. Since the

operations in all PE rows are identical it is only necessary to

describe data flow in one of the N3/b PE rows.

The input buffer contains addressing logic (not shown) that

takes a continuous (normal order) serial stream of FFT input

data, converts each FFT block into N4 columns sets Xbci, and

then distributes these column sets to the b RAMs labeled “B”

so that each contains N4*N1c values prior to the start of FFT

processing. (More input buffer detail is provided in [7].)

With reference to Fig. 3 the two processing stages are

described again at another level of detail below.

Stage 1: Column DFTs

For this stage the “mux” in Fig. 3 supplying data to LHS

PEs (Fig. 4) is set to select its input from registers labeled “R”,

which are there to permit systolic flow of Xbci from input

buffer RAMs “B” up through the LHS array. The LHS PEs in

row 1 use preloaded values of the first row of CM1 (Fig. 4) to

perform vector-matrix products as a linear systolic array

producing the first row of CM1 Xbci, i=1,2,.. N4. Successively

produced elements are multiplied by appropriate elements of

 (stored in a ROM) and become the first row of

 ,

i=1,2,.. N4. As the RHS PE row 1 receives elements of
 it

performs similar matrix-vector multiplications producing the

first column of Zbci, i=1,2,.. N4. Here, the elements CM2 (not

shown) flow up through registers in the RHS SA from a small

ROM (not shown) at the array bottom edge.

Fig. 3. Systolic processing flow for bottom PE row #1. To avoid clutter the

CM1 and CM2 inputs and associated registers are not shown.

After each column element of Zbci is computed in the RHS

PEs (Fig. 4), a multiplexor (“mux” in Fig. 3) selects them and

sends them sequentially to a normalizer (“norm” in Fig. 3).

Here, the growth in the word length at that point from the

original n-bit length is determined and a shift occurs so that

the word is restored to n-bits with the shift amount saved as an

exponent.

The final operation in the stage 1 column DFT systolic flow

is the twiddle multiplication by values of stored in a ROM.

The output of the multiplier feeds a bus that connects the b PE

internal memories “M”. Each memory receives enable signals

so that the elements of Zbci flow to the correct memory.

Stage 2: Row DFTs

Conceptually, the processing during this step with M=N4

based on (1) follows closely that for the column DFTs, with

two minor differences. First, the LHS PE input multiplexors

are set to take the Xbri inputs from the internal PE memories

“M”, so CM1 Xbri is computed using a systolic flow of CM1

values into the LHS SA from a ROM at bottom edge of the

SA. Second, the Zbri outputs (normalized n-bit values plus

exponents) are stored in the output buffer “B” instead of the

internal memories (twiddle multiplication by “1” here).

Control

Systolic data flow is naturally best served by a similar flow

of control. Therefore for each clock cycle a control word is

supplied by an external array controller to each column of PEs

in both SAs and this flows upward in systolic registers

providing values for addresses, read/write enables, etc.

Fig. 4. PE structures depicted for the data flow of stage 1 in Fig. 2-3.

B. Dynamic Range

Signal-to-quantization-noise ratio (SQNR) performance is

another important circuit characteristic, the goal being to

maximize SQNR while minimizing fixed-point word lengths

because longer words necessitate bigger memories and

increase critical path lengths. A hybrid floating point (FP)

alternative is used here that requires ~15% hardware overhead,

an earlier version of which is described in more detail in [8]. It

now involves no fixed scaling and has been modified here to

be programmable. The associated control circuitry contains N3

registers to keep track of the maximum exponent for each of

the N3 DFT matrix rows computed during stage 1 (Fig.2).

These exponent values are added to results from the same row

in the N3xN4 DFT matrix upon output. Comparisons show at

least 4-bit (24db) improvement in SQNR over pure block

floating point (BFP) approaches.

C. Programmability

The benefit of a programmable circuit is that the

computational hardware can be highly optimized and then

reused with different control circuitry to do different sets of

computations. All that is necessary is that the DFT size be

factorable into relatively small numbers. For example a 100-

point transform could be factored as 4x(5x5). In this case it

would be necessary to do 4 25-point transforms followed by

25 4-point transforms. Each 25-point transform would be

most naturally done as 5 column transforms followed by 5 row

transforms on the 5x5 matrix representing the 25-points. An

array with b=5 could be used and a control circuit built that

would be responsible for generating the addresses and

coefficients supplied to the SA. For simple transforms, like

the power-of-two examples (Section IV-B and C), finite state

machines can be used. For more complex examples like the

LTE example (Section IV-D), more general loop based RTL

code could be used with loop parameter values specified in a

small ROM memory.

D. Scaling

The base-b architecture throughput can be scaled upward in

two ways: (1) by choosing N3 to increase the linear length of

the array [7] and (2) by simply replicating the array up to b

times. Approach (1) is simpler but less efficient since the

stage 1 processing time does not decrease, whereas for (2)

throughput is increased by b. Both approaches can also be

combined.

IV. IMPLEMENTATION EXAMPLES

A. Introduction

In this section three very different FPGA implementations

of the base-b architecture are described to demonstrate its

range of use. The first designs (Section IV-B) are fixed-size

power-of-two FFTs that take computational advantage of the

radix-4 butterfly matrix, in which case the LHS/RHS PE

multipliers in Fig. 4 can be replaced by adders because CM1/2

only contains {±1,±j}. The second design (Section IV-C) is

similar to the first, buts adds a requirement for run-time choice

of FFT size. For these two design types the SA FFT is

compared to Altera’s commercially available FFT pipelined

circuits (IP v10.1), since these have been optimized over 10

years and are representative of the fastest with the highest

dynamic range of which we are aware.

Finally, for the third example (Section IV-D) the focus was

on a more complex, non-power-of-two design, one that uses

mixed-radices, offers run-time FFT choice and yet has the a

very simple programming model.

B. 256-point and 1024-point "Streaming" (Normal Order In

and Out) Fixed-size FFTs

For these two transform sizes the FFT circuits were

compiled using Altera’s software tools (Quartus II) with

exactly the same settings (all synthesis options turned off) and

the same target hardware (Stratix III EP3SE50F484C2 65 nm

FPGA). The SQNR results for the Altera circuits were

obtained from a bit-accurate Matlab model created along with

the circuit by the Altera FFT generators. Altera’s Timequest

static timing analyzer was used to determine "worst case"

maximum clock frequencies (Fmax) at 1.1V and 85C.

Circuit comparisons shown in Table I are with Altera’s

mixed radix-4/2 20-bit pipelined FFTs that use BFP (single

exponent per FFT block) to achieve a similar SQNR as the SA

FFT circuits. Here the adaptive logic module (ALM) is the

basic unit of a Stratix III FPGA (an 8-input "adaptive" LUT,

two registers plus other logic). Fmax or clock rate is the same

as the complex data sample rate. Table I shows that the SA

FFTs use less logic and memory and still provide throughput

rates that are 46%/37% higher for 256/1024-points.

TABLE I. COMPARISON OF ALTERA AND SA FIXED-SIZE FFT CIRCUITS.

Altera SA FFT Altera SA FFT

 20-bits 16-bits 20-bits 16-bits

Transform Size 256 256 1024 1024

ALMs 4261 3982 4394 4331

Memory Bits (K) 49 40.6 195 145

Multipliers (18-bit) 24 33 24 33

Fmax (MHz) 387 566 382 524

SQNR 76.6 86.7 81.3 82.8

FFT time (µsec) 0.66 0.45 2.7 2.0

C. Variable FFT

Design Approach

In this section a variable streaming FFT circuit is described

that provides run-time choice of 128/256/512/1024/2048

transform sizes as required for WiMax and LTE protocols.

For this circuit with b=4 it was natural to choose a

factorization with N3=16 for all transform sizes. This choice

leads to simple 4x4 SAs in Fig. 2-3 for the 16-point column

transforms and processing using (1). Also all the desired

twiddle factors WN can be conveniently found among the

elements of W2048.

After the column DFTs, best efficiency is achieved by

factoring the DFT differently for each transform size. The

rows in Table II, “Stage 2a” and “Stage 2b”, show how each

DFT transform of a matrix row of length N4 is performed in

the SAs. The “4x2” means that an 8-point transform is done as

a 4-point transform in the LHS SA followed by a 2-point

transform in the RHS SA. The “4” means the LHS SA only

does the 4-point transforms and “16” means processing

follows (1) and is conceptually identical to the row DFT

processing described in stage 2 of Fig. 2-3. For example to do

a 2048-point transform, 128 16-point column DFTs are

performed. Then for the row transforms, 16 8-point

transforms are computed in stage 2a using both LHS and RHS

SAs, followed by 8 16-point DFTs using (1) in stage 2b.

(Both stage 2a and b use similar “row DFT” flow patterns.)

TABLE II. FACTORIZATIONS OF N4 USED FOR FIVE TRANSFORM SIZES, N.

N 128 256 512 1024 2048

N4 8 16 32 64 128

Stage 2a 4x2 16 4x2 4 4x2

Stage 2b - - 4 16 16

Circuit Comparisons

Table III, comparing variable FFT circuits (128-2048

points), was put together using the same design software and

target hardware as the fixed point designs. Additionally, SA

FFT circuit operation at 500MHz was demonstrated on an

Altera Stratix III EP3SL150F1152C2 FPGA using a

development board. Fmax (clock speed) is the same as the

complex data sample rate.

TABLE III. COMPARISON OF VARIABLE SA AND ALTERA FFT CIRCUITS.

SA FFT

16bits in/30 bits out

Altera

16bits in/out

ALMs/slices 4522 3826

RAM Memory (K) 290 208

Multipliers (18-bits) 33 36

Fmax (MHz) 510 315

As can be seen in Table III, the variable SA FFT circuit

uses 18%/39% more ALMs/memory, but the relative

throughput is a substantial 62% better. The Altera (non-

programmable) single-path radix 2
2
 delay-feedback (SDF)

design is slower than Altera's fixed point FFT (Section IV B)

because the 16-bit input word length grows to 30 bits at the

output, so that the SQNR is as high as that for the SA FFT

(~84db average). Processing these longer word lengths slows

down the Altera SDF speed. Additionally, the SA FFT has

built in support for the cyclic prefix generation and insertion

needed for the targeted LTE/Wimax protocols, whereas the

Altera circuit would require a completely separate 30-bit

circuit to perform this function. Therefore, for the Altera

circuit to support these protocols, more ALMs and memory

would be required than indicated in Table III.

D. Non-power-of-two Circuit

1) Design Approach

Here a circuit capable of computing at run-time any one of

the 35 different DFT sizes used in the LTE SC-FDMA uplink

protocol (12 to 1296 points) is described. In this

implementation the value b is chosen to be 6, so that SAs for

b=5,4,3,2 are embedded as well. (The architecture is exactly

the same as described for the power-of-two cases.) To make

the circuit more directly comparable to other circuit

implementations to which it is compared (Section IV-D-5),

only a single linear PE row was used from the LHS and RHS

SAs. In other words each LHS, RHS and multiplier PE

columns in the array (Fig. 2) is projected (collapsed vertically)

onto PE row #1 in Fig. 3. Thus, there are 6 RAM memories

associated with LHS/RHS PEs and a single output buffer

RAM. Also, a complex multiplier is used in each LHS/RHS

PE (Fig. 4) because CM values are complex. This linear SA

emulates the operations of the 2-D SA of Fig. 2, but completes

a DFT computation a factor of b times slower.

2) On-the-fly-Twiddle Coefficient Calculation

The algorithmic discussion in Section II-A describes how a

twiddle factor (WN) computation must occur in between the

column DFTs (stage 1) and the row DFTs (stage 2). For a

single DFT, or small number of DFTs, the twiddle coefficients

could be stored in a small ROM; however, for a large number

of DFT sizes the ROM size needed could be prohibitively

large and effectively limit the number of DFT sizes supported.

To address this twiddle storage issue we have adopted an

approach based on a programmable on-the-fly-generation of

the twiddle values for a particular DFT size. This twiddle

coefficient engine uses a single complex multiplier, a table of

twiddle seed values, and a set of size parameters as a basis for

doing this. The iterative equation (-) , where

 - and is a seed value, is used to generate values for

a particular DFT size given the starting seed.

For example in the implementation of the LTE SC-FDMA

application the twiddle generation circuit required only 1024

words of memory to hold all twiddle seeds needed for 35 DFT

sizes. The logic needed to implement the entire programmable

twiddle circuit is only ~10% of the circuit hardware.

3) Example DFT Operation (N=540-point)

The circuit implemented, shown in Fig. 5a, consists of 6x6

(virtual) LHS and RHS SAs, so that any DFT of size B≤6 can

be computed in either by multiplying the data vector by the

coefficient matrix B

-

B

 B- B- The

matrices in (1) contain one or more arrays of these

coefficient matrices CB, e.g., [B| B|] and

 [B
 B

] as shown in [7].

Consider the example N=540=N3*N4. Since our

implementation consists of 6x6 SAs, it would be most

efficient to choose the factorization N3*N4=36*15=6
2
*(3*5)

because this makes best use of all the hardware. In this case

the processing consists of 15 36-point column DFTs followed

by 36 15-point row DFTs. The input Xb is stored in the input

buffers in such a way that it is accessible as a sequence of

blocks Xbci, i=1..15 of 6x6 column data. Then the 36-point

column DFTs are done using (1) with

M=N3=36=N1c*N2=N1c*b=6*6 and B (B=6).

Each Xbci enters the array at the bottom of the LHS SA (Fig. 2a

and Fig.5a) and flows upward with systolic matrix-matrix

multiplications performed as shown in Fig. 2a. As each of

these 36-point column DFTs are computed, they are multiplied

by elements in the 36x15 twiddle matrix W520 (Fig. 3) which

are generated on-the-fly. During this processing stage all PEs

are used with 100% efficiency. (As noted in Section IV-D-1,

the implementation is a linear array that emulates this 2-D

processing.)

After twiddle multiplication by W520 , the multiplexor in Fig.

3 is used to store data for the 15-point row DFTs in a way that

they can be accessed as 3x5 data input blocks, Xbri, i=1..36,

from the internal PE RAMs. In particular each of the 6 PE

virtual rows is responsible for storing 6 3x5 blocks of DFT

row data in associated internal RAMs. For the row DFTs not

all the LHS/RHS PEs are used as shown in Fig. 5b. Rather, as

shown in Fig. 5b, the LHS side SA reads from RAMs in five

of the six PE columns to do the 5-point transforms by

multiplication of these data blocks by C5. The multiplier array

then multiplies these transform values arriving from the LHS

array by appropriate elements of a 3x5 twiddle matrix stored

in a small ROM. Finally, only 3 PE columns are used on the

RHS array to perform all the 3 point transforms. Results are

stored in an output buffer and are output in normal order.

4) Programming

The base-6 circuit described here is “programmed” at a

more abstract level than the base-4 circuits in Section IV B

and C. It uses a single ROM or RAM memory to hold

parameters that determine the specific factorizations and

execution orderings used for loop index ranges in the verilog

HDL coded control modules. Consequently, any transform

size consistent with the circuit base b can be computed and the

number of different DFT sizes that can be supported

(including powers-of-2) is only limited by the size of this

parameter memory.

5) Comparisons

To compute transforms for N≠2
n
, a variety of mixed radix

approaches have been used [10]-[16]) and systolic arrays

(SAs) [4] have been proposed. However, of these only the

memory-based approaches [12] [15] [16] provide high speed

and are capable of run-time choice of different non-power-of-

two DFTs. The speeds of the different designs are primarily

related to the complexity of the butterfly unit design. For

example [12] uses the mixed radix approach with radices

{2,3,5} so that N=2
n
*3

m
*5

p
 , where n,m,p are integers, based

on a single pipelined, parallel butterfly unit that can do radix-

2,3,4 and 5 operations. Alternatively, [16] uses a maximum

radix size of 16 to reduce computation cycle count.

Table IV is a technology independent comparison of these

designs obtained from averages over the 35 different DFT

LTE transform sizes (34 for the Altera [15] circuit). In

addition to the usual latency (cycles) and throughput numbers

(1/cycles), the average time in cycles to compute a single LTE

resource block, assuming 7 symbols duration in an uplink slot,

has been added. (This latter more practical measure combines

times associated with both latency and throughput.) The SA

FFT cycle counts are based on Modelsim gate level

simulations.

Fig. 5. Virtual 2-D arrays used for row and column DFTs, N=520.

TABLE IV. DFT PERFORMANCE BASED ON CYCLE COUNTS.

 Average

Latency

Average

Throughput

Resource Block

Computation

Altera [15] 1.39 0.47 2.01

Xilinx [12] 0.86 0.65 1.50

SA FFT 1.00 1.00 1.00

For ease of comparison in Table IV the results have been

normalized to the corresponding base-6 SA FFT value. As

can been seen, the other designs are slower by ≥50% in the

important resource block category.

The technology comparisons for all the FPGA LTE circuits

of which we are aware are shown in Table V. For Virtex-5

FPGAs (also a 65nm technology) the basic logic unit is a logic

element (LE) (one ALM 1.5 LE’s)
2
. The Virtex 18/36K

BRAMs are counted as equivalent to 2/4 Stratix 9K RAMs.

The SA FFT circuit uses a smaller word length, but has a

much more efficient hybrid FP scaling scheme, providing 64

to 74db SQNR; the SQNR is not reported in the other designs.

The SA FFT hardware entries came from Altera Quartus II

design, synthesis and place-and-route tools with the Timequest

static timing analyzer generating Fmax. Two Xilinx [12]

designs, 8-bits and 18-bits, are used as these likely bracket the

SA FFT SQNR values.

Table V is only intended to provide a rough guide to

implementation costs because of the different FPGAs used,

lack of reported SQNR values, and different functionality (the

Altera design doesn’t do all LTE sizes and doesn’t provide

normal order outputs which would require more logic/memory

and increase latency). However, Table V shows the SA FFT

2 Xilinx and Altera benchmark studies show 1 ALM=1.2 LEs (Xilinx white

paper WP284 v1.0, December 19, 2007, and 1 ALM=1.8 LEs (Altera white
paper WP-01007-2.1 Oct. 2007). Therefore, an average of 1.5 was used here.

implementation is likely to be more compact than [12][16]

designs in terms of FPGA logic and registers. The Altera

implementation uses less logic, but lacks complete

functionality and is slower. The SA FFT clock speed is lower

than design examples in Section IV B and C largely due to

desire for enhanced programmability, e.g., the critical paths

were in the control unit rather than the SA. It should be noted,

however, that the SA LTE circuit was tested at 450 MHz on an

Altera Stratix III EP3SL150F1152C2 FPGA using a

development board. (Fmax in the tables here, at least for the

Altera Quartus designs, represents a worst-case speed.)

If the clock speeds from Table V are combined with cycle

counts in Table IV, a good measure of performance can be

obtained as shown in Table VI. Here the average DFT

computation times for a resource block are shown normalized

to the SA FFT value and show speed-ups of >x2.

It wasn't possible to include [16] in Table VI because only

DFT throughputs were reported there, not latency values.

However, if only throughput rates are compared, the SA FFT

provides rates that are ~35% faster on average based on the

cycle counts reported in [16].

TABLE V. LTE CIRCUIT TECHNOLOGY COMPARISONS

Design FPGA Bits Scaling LUT
ALM
/LE

RAM Mult Fmax

9K eqv 18-bit (MHz)

SA Stratix III 12 BFP/FP 3582 2733 30 60 394

Xilinx [12] Virtex-5 8 BFP 3447 2955 20 16 318

Xilinx [12] Virtex-5 18 BFP 4707 3864 20 16 276

Altera [15] Stratix III 18 BFP 2600 n.a. 17 32 260

Chen [16] Virtex-5 18 Scaling 7791 n.a. n.a. 44 123

TABLE VI. LTE CIRCUIT THROUGHPUT COMPARISONS

Design
Average LTE Resource Block

Compute Time

SA FFT 1.0

Xilinx [12] 2.1

Altera [15] 3.0

Note that [15] and [16] rely on the use of the prime factor

algorithm, which avoids the need for twiddle multiplications.

The SA FFT design does not use the prime factor approach

and therefore provides more flexibility in choice of DFT sizes.

Also, the SA FFT is programmable compared to [12][15][16]

as it relies simply on entering parameter values in a ROM or

RAM for each desired transform size.

V. CONCLUSION

We have demonstrated a new class of FFT architectures that

combines the simplicity, regularity and interconnection

locality of SAs, with the speed of pipeline architectures and

flexibility/programmability of memory based architectures. In

particular the comparative benefits are:

 Improved throughput rates resulting from high clock

speeds (>500MHz for 65nm FPGA technologies), made

possible by the inherently localized circuit operation

which reduces routing delays. For example the SA FFT

compute times for LTE resource blocks are >x2 faster

than the non-programmable circuits available from the

two largest FPGA manufactures, Xilinx and Altera.

 Suitability for a wide range of power-of-two and non-

power-of-two transform sizes.

 High dynamic range as a result of a combined block

floating point and floating point scaling.

 Programmability.

 Throughput scalability due to the use of systolic

algorithms.

 Built in cyclic prefix support for wireless protocols.

Finally, circuit performance and verification have been

confirmed in FPGA hardware as well as simulations for both

power-of-two and non-power-of-two classes of circuits. By

providing both high performance and programmability, such

circuits can be used to meet the demanding FFT requirements

for future 4
th

 generation (and beyond) wireless systems.

ACKNOWLEDGEMENT

We would like to acknowledge the help of Sarath Kallara

for assistance in the design of the power-of-two circuits, in

particular test benches, control circuitry, plus tools to enable

parametric generation of circuits with different word lengths,

and Wayne Fang for on-the-fly twiddle and address generation

circuitry.

REFERENCES

[1] Gijun Yang and Yunho Jung, "Scalable FFT Processor for MIMO-
OFDM Based SDR Systems", 2010 5th Int. Sym. on Wireless Pervasive

Computing, pp. 517-521.

[2] Pei-Yun Tsai, Chia-Wei Chen, and Meng-Yuan Huang, “Automatic IP
Generation of FFT/IFFT Processors with Word-Length Optimization for

MIMO-OFDM Systems,” EURASIP J. on Advances in Signal

Processing, V. 2011, Article ID 136319, 15 pages.
[3] Chen-Fong Hsiao, Yuan Chen, and Chen-Yi Lee, “A Generalized

Mixed-Radix Algorithm for Memory-Based FFT Processors”, IEEE

Trans. Circuits and Systems II: Express Briefs, V. 57, Issue 1, Jan. 2010,
pp. 26-30.

[4] P. K. Meher, J. C. Patra, A. P. Vinod, “Efficient systolic designs for 1-

and 2-D DFT of general transform-lengths for high-speed wireless
communication applications”, J.Sig. Process Sys.(2010), V.60, pp.1–14.

[5] H. Ho, V. Szwarc, and T. Kwasniewski, “A reconfigurable systolic array

architecture for multicarrier wireless and multirate applications”, Int. J.
of reconfigurable computing, V. 2009, Article ID 529512, 14 pages.

[6] S. Y. Kung, VLSI Array Processors, Prentice Hall, 1988.

[7] J. Greg Nash, “Computationally efficient systolic architecture for
computing the discrete Fourier transform”, IEEE Trans Sig. Process., V.

53, Dec. 2005, pp. 4640-4651.
[8] J. G. Nash, “A new class of high performance FFTs”, Proc. 2007 IEEE

Conf. on Acoustics, Speech and Sig. Proc., pp. II-21 - II-24.

[9] S. Y. Kung, VLSI Array Processors, Prentice Hall, 1988.
[10] A. T. Jacobson, D. N. Truong, B. M. Baas, "The design of a

reconfigurable continuous-flow mixed-radix FFT processor" Proc. 2009

IEEE Int. Symp. on Circuits and Systems, pp. 1133-1136.

[11] P.A. Milder, F. Franchetti, J.C. Hoe, M. Puschel, “Hardware

implementation of the DFT with non-power-of-two problem size”, Proc.

2010 IEEE Int.Conf. Acoustics Speech Sig. Proc., pp.1546-1549.
[12] Xilinx Discrete Fourier Transform v3.1, DS615 Mar. 1, 2011.

[13] Z.-X. Yang, et. al., “Design of a 3780-point IFFT processor for TDS-

OFDM,” IEEE Trans. Broadcast., vol. 48, pp.57–61, Mar. 2002.
[14] Shin-Chi Lai, et.al, “Low-computation-cycle, power-efficient, and

reconfigurable design of recursive DFT for portable digital radio

mondiale receiver,” IEEE Trans. Circuits and Systems II, 2010, V. 57,
pp. 647-651.

[15] Altera DFT/IDFT Reference Design, Application Note 464, May 2007.

[16] Jienan Chen, Jianhao Hu, and Shuyang Li, “High throughput and
hardware efficient FFT architecture for LTE application”, Proc. 2012

IEEE Wireless Communications and Networking Conf., pp. 826-831.

