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Abstract—A small, fine-grained systolic FFT architecture is 

described that is fast, programmable, can do non-power-of-two 

DFTs, and provides a higher signal-to-noise ratio for a given 

fixed-point word length than traditional block floating point 

approaches. To demonstrate the basic architecture, several 

designs were implemented using 65nm FPGA technology:  (1) 

fixed-size 256-point and 1024-point circuits; (2)  a power-of-two 

variable FFT circuit for LTE OFDM; and (3)  a non-power-of-

two circuit for LTE SC-FDMA DFT computations, that is 

programmed by entering parameter values into a single ROM 

memory. These three circuits demonstrate >37%, 62% and 

>100% higher throughputs than the other pipelined and 

memory-based FFTs to which they are compared.   These circuits 

run at clocks speeds as high as 566 MHz, 46% higher than any 

other circuit in the comparisons.  Finally, the architecture 

provides scalable throughput by increasing the array size.  

 
Index Terms—Fast Fourier transform, discrete Fourier 

transform, systolic array, FPGA, pipelined FFT, non-power-of-

two. 

I. INTRODUCTION 

The discrete Fourier transform (DFT) is one of the most 

prominent signal processing algorithms.  In particular it is has 

been proposed for use in a variety of wireless transmission 

protocols, as for example WiMax, LTE and DVB-T2.  The 

protocols are complex and place significant demands on the 

DFT circuitry due to the need for  

 run-time choice of DFT sizes (scalable OFDM) 

 larger transform sizes (LTE: 2K points; DVB: 32K points)  

 high throughputs as a result of MIMO data streams and 

carrier aggregation ( LTE Advanced 100MHz bandwidths)  

 non-power-of-two DFTs (SC-FDMA: 35 transform sizes; 

digital radio mondiale: 288, 256, 176,112 points) 

Since these applications are real-time, special purpose parallel 

circuitry, coupled with fast algorithms for computing the DFT, 

is essential.   

Most high performance 1-D FFT designs fall into one of 

two categories: either delay feedback (DF) and delay 

commutator (DC) ([1], [2]) pipelined designs or serial 

memory-based designs [3].  Pipelined designs are 

computationally efficient and fast, but lack programmability 

and are typically intended only for power-of-two-transforms.  

Memory-based designs are more flexible, but considerable 

complexity is required to achieve high speed and they are not 
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inherently scalable. "Systolic" array (SA) designs have also 

been proposed for wireless fixed-size DFT computations 

[4][5] and are attractive because of their simplicity, regularity, 

scalability, locality of interconnections and suitability for non-

power-of-two transforms. However, they require substantial 

hardware,  ~N real multipliers, where N is the transform size. 

In contrast the “base-b” architecture described here is also a 

SA (memory-based) with the beneficial attributes listed above; 

however, it is far smaller in size than traditional SAs because 

hardware usage is comparable to that of traditional FFT 

implementations, with which it also shares computational 

efficiencies.  Additionally,  it is programmable, can do non-

power-of-two DFT sizes, provides higher throughput 

implementations, supports cyclic prefix insertion and includes 

a low overhead hybrid floating-point feature that increases 

dynamic range for a given fixed-point word size.   

The SA memory-based design is architecturally very 

different than traditional memory-based approaches as can be 

seen in Fig. 1.  Here a traditional high-performance memory-

based design (Fig. 1(a)) contains a plurality of large arithmetic 

units, where typically butterfly computations are performed, 

connected to a similar plurality of memories. The goal in such 

designs is to sequence data to/from the memories in such a 

way that data I/O rates are maximized.  Alternatively, the SA 

does the same thing, but at a finer level of granularity.  From 

Fig. 1(b) the SA is seen to consist of many very small 

processing elements (PEs), each containing multiplier/adders 

and a few registers.  Each PE reads and writes to a typically 

small “simple” dual-port memory and aggregate bandwidth is 

limited only by the number of PEs.  The well-known 

scalability of systolic algorithms [6] means that high 

bandwidths, and thus performance, are achieved by simply 

increasing the array size.  It is much more difficult to do the 

same for traditional memory based designs.  
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Fig. 1(a).  Traditional memory-based FFT architecture and (b) fine-grained 

SA equivalent. 

 

Although not shown in Fig. 1(b), each PE is locally 

connected to its neighbors which keeps interconnections short. 

This is particularly important as process technologies migrate 

to 22nm sizes and routing delays become an increasingly 
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dominant part of the critical path.  A good example of this 

trend are the Tabula ABAX
2
 FPGAs with their new 

"Spacetime" architecture which adds a virtual vertical 

dimension to their LUT fabric.  In this case finding localized 

circuit compilations will be essential to efficient use of such 

devices.  The base-b architecture presented here was actually 

designed using a true space-time mapping tool that generates 

latency optimal solutions [7], so that implementations are 

fundamentally localized. Therefore, with good place-and-route 

compilers, high speeds are easily obtainable along with 

potentially lower power due to reduced interconnection usage.  

For example the power-of-two circuits presented here all run 

with worst-case clock speeds >500MHz, using 65nm FPGA 

technology, speeds which are higher than any other similar 

FPGA FFT circuits of which we are aware and approach the 

clock speed limits of the FPGA fabric. 

Note that we have previously implemented a couple of 

base-4 concept demonstration, fixed-size FFT circuits in 

FPGA technology [8]; however, the circuit architecture 

described here is much improved.  In particular, that in [8] (1) 

did not employ the simple PE-memory processing flow shown 

Fig. 1(b); (2) required an entirely separate processing step and 

support hardware to perform the twiddle operations (Fig. 1 in 

[8]), which has been eliminated here; (3) used inefficient PE 

memory management schemes,  replaced here by  “in-place” 

RAM read/write operations and agglomeration of output 

buffers, reducing the number of embedded PE RAMs by more 

than a factor of 2; (4) utilized some fixed scaling, whereas 

here there is no fixed scaling; and (5) was constrained to the 

fixed, non-programmable base-b processing described in [7], 

whereas here additional architectural support for 

programmability has been added. 

The focus in this paper is on FPGA-based implementations, 

because of their rapidly growing use in semiconductor 

applications.  Modern FPGAs have large numbers of 

embedded multipliers (as many as 868 on a single FPGA in 

the Altera Stratix III series) and embedded memories, which 

result in very different design tradeoffs compared to ASIC 

designs. Therefore, because FPGA chips are expensive, the 

main design objective here is to minimize the use of LUT 

logic and registers, while maximizing performance.  

The algorithmic basis for the architecture is summarized in 

Section II-A, followed by a simplified architectural 

description in Section II-B.  Section III introduces a very 

general implementation scheme, followed by several DFT 

implementation examples: fixed-size power-of-two circuits in 

Section IV-B; a variable power-of-two circuit in Section IV-C; 

and a non-power-of-two circuit in Section IV-D.  (Each design 

was chosen with wireless applications in mind.)  Section V 

concludes with a summary of base-b architectural features. 

II. ARCHITECTURE 

A. Algorithmic Basis 

The overall architecture is based on two levels of 

factorization [7] of the transform size N starting with 

N=N3*N4.
1
 Here the N3xN4 “DFT matrix” X contains input 

samples xi that are arranged x1,x2,...,xN4 on row 1, 

xN4+1,xN4+2,...,x2*N4, on row 2, etc.  Using the traditional 

“row/column” approach to compute the DFT, this 

factorization requires computation of two sets of smaller 

DFTs, N4  transforms of length N3 (referred to as “column” 

DFTs) and N3  transforms of length N4  (referred to as “row” 

DFTs).  In between column and row transforms it is necessary 

to multiply each of the N points by the usual twiddle factor,   

              
   
  

-  
    

 
 
 i=0,1,..,N3-1,  k=0,1,..N4-1. 

A second level of factorization [7] can be used in 

computing an M-length row or column DFT based on the 

decomposition M=N1*N2=N1*b, leading to 

                                     (1) 
        

    

where “b” refers to the value of N2 or “base”.     is an input 

data matrix of bxN1 points and    is a DFT output matrix of 

bxN1 points.  Also,    is a small N1 x N1 coefficient matrix 

used in an element-by-element multiply and          are 

arrays of radix-b butterfly matrices.   

B. Architecture 

An abstraction of the architecture (Fig. 2) shows that it 

consists of two N3/bxb processing element (PE) SAs 

connected by a N3/bx1 array of complex multipliers ([7]).  

Each PE in the LHS and RHS SAs contains a few registers, 

multiplexors, a complex multiply/adder, and miscellaneous 

logic.  Additionally, each PE in each SA array has access to a 

small simple dual-port RAM, to which RHS PEs write and 

LHS PEs read. The systolic matrix-matrix multiplications are 

carried out using well known mappings of signal flow graphs 

to PE arrays [6].  FFT input data in Xb are all fixed-point n-bit 

2’s complement words. The column and row DFT stages are 

described below based on (1). 

 

Stage 1:  Column DFTs 

An input buffer feeds the LHS SA with columns Xbci, 

i=1..N4, of the N3xN4 DFT matrix, and each Xbci is organized as 

a bxN1c matrix (M=N3=b*N1c). Also, each PE in the LHS SA 

contains an element of the matrix CM1. The systolic matrix-

matrix multiplication result CM1 Xbci then flows out of the LHS 

SA through the multiplier array shown in Fig. 2 where the 

coefficient multiplication by WM=WN3, stored in ROM, 

produces     
 .  A second systolic matrix-matrix multiplication 

is then performed by the RHS SA with inputs     
  from the left 

and CM2 from the bottom (one CM2 matrix per column Xbci), 

producing the results Zbci, which are stored in a distributed 

fashion in the RHS PE RAMs and become the Xbri for row 

DFTs after the twiddle multiplication by   . 

Stage 2: Row DFTs 

The processing in this step when based on (1) with 

M=N4=b*N1r is identical to that for the column DFTs with two 

exceptions.  First, there is a juxtaposition of the CM1 values 

with the Xbri row inputs.  In this case the row Xbri values are 

 
1 Notation follows that in [7] to maintain consistency. 



retrieved from the LHS SA PE internal RAMs, while the CM1 

values now flow into the LHS SA from the bottom.  Second, 

the Zbri FFT outputs are stored in a separate RAM output 

buffer if normal order data output is desired. 

 

 
Fig. 2.  Systolic processing flow for column and row DFTs. Subscript “c” and 

“r” refer to computing column and row DFTs of the N3xN4  DFT matrix. 

III. IMPLEMENTATION 

A. Introduction 

The actual base-b circuit implementation is a direct 

mapping of the architecture shown in stage 1 of Fig. 2, i.e., the 

circuit contains the three array structures with distributed 

internal RAMs along with integrated input and output buffers 

if normal order data output is desired.  However, the mapping 

of the row DFT operations in stage 2 of Fig. 2 onto this 

hardware is not direct and is described fully in Section V-D of 

[7]. 

A more detailed view of the circuit hardware is provided in 

Fig. 3, which shows the flow of Xb in one “PE row”.  A PE 

row contains one row each from the LHS and RHS SAs 

including the multiplier in between the two SAs.  The 

particular PE row shown is the bottom row #1.   Since the 

operations in all PE rows are identical it is only necessary to 

describe data flow in one of the N3/b PE rows.  

The input buffer contains addressing logic (not shown) that 

takes a continuous (normal order) serial stream of FFT input 

data, converts each FFT block into N4 columns sets Xbci, and 

then distributes these column sets to the b RAMs labeled “B” 

so that each contains N4*N1c values prior to the start of FFT 

processing.  (More input buffer detail is provided in [7].) 

With reference to Fig. 3 the two processing stages are 

described again at another level of detail below. 

Stage 1: Column DFTs 

For this stage the “mux” in Fig. 3 supplying data to LHS 

PEs (Fig. 4) is set to select its input from registers labeled “R”, 

which are there to permit systolic flow of Xbci from input 

buffer RAMs “B” up through the LHS array.  The LHS PEs in 

row 1 use preloaded values of the first row of CM1 (Fig. 4) to 

perform vector-matrix products as a linear systolic array 

producing the first row of CM1 Xbci, i=1,2,.. N4.  Successively 

produced elements are multiplied by appropriate elements of 

      
 (stored in a ROM) and become the first row of     

 , 

i=1,2,.. N4. As the RHS PE row 1 receives elements of     
  it 

performs similar matrix-vector multiplications producing the 

first column of Zbci, i=1,2,.. N4. Here, the elements CM2 (not 

shown) flow up through registers in the RHS SA from a small 

ROM (not shown) at the array bottom edge. 

 

 
Fig. 3.  Systolic processing flow for bottom PE row #1.  To avoid clutter the 

CM1 and CM2 inputs and associated registers are not shown.  

 

After each column element of Zbci is computed in the RHS 

PEs (Fig. 4), a multiplexor (“mux” in Fig. 3) selects them and 

sends them sequentially to a normalizer (“norm” in Fig. 3).  

Here, the growth in the word length at that point from the 

original n-bit length is determined and a shift occurs so that 

the word is restored to n-bits with the shift amount saved as an 

exponent. 

The final operation in the stage 1 column DFT systolic flow 

is the twiddle multiplication by values of    stored in a ROM. 

The output of the multiplier feeds a bus that connects the b PE 

internal memories “M”.  Each memory receives enable signals 

so that the elements of Zbci flow to the correct memory. 

Stage 2: Row DFTs 

Conceptually, the processing during this step with M=N4 

based on (1) follows closely that for the column DFTs, with 

two minor differences. First, the LHS PE input multiplexors 

are set to take the Xbri inputs from the internal PE memories 

“M”, so CM1 Xbri is computed using a systolic flow of CM1 

values into the LHS SA from a ROM at bottom edge of the 

SA.  Second, the Zbri outputs (normalized n-bit values plus 

exponents) are stored in the output buffer “B” instead of the 

internal memories (twiddle multiplication by “1” here).  



Control 

Systolic data flow is naturally best served by a similar flow 

of control.  Therefore for each clock cycle a control word is 

supplied by an external array controller to each column of PEs 

in both SAs and this flows upward in systolic registers 

providing values for addresses, read/write enables, etc.   

 
Fig. 4.  PE structures depicted for the data flow of stage 1 in Fig. 2-3. 

B. Dynamic Range 

Signal-to-quantization-noise ratio (SQNR) performance is 

another important circuit characteristic, the goal being to 

maximize SQNR while minimizing fixed-point word lengths 

because longer words necessitate bigger memories and 

increase critical path lengths.  A hybrid floating point (FP) 

alternative is used here that requires ~15% hardware overhead, 

an earlier version of which is described in more detail in [8]. It 

now involves no fixed scaling and has been modified here to 

be programmable. The associated control circuitry contains N3 

registers to keep track of the maximum exponent for each of 

the N3 DFT matrix rows computed during stage 1 (Fig.2).  

These exponent values are added to results from the same row 

in the N3xN4  DFT matrix upon output.  Comparisons show at 

least 4-bit (24db) improvement in SQNR over pure block 

floating point (BFP) approaches. 

C. Programmability 

The benefit of a programmable circuit is that the 

computational hardware can be highly optimized and then 

reused with different control circuitry to do different sets of 

computations.  All that is necessary is that the DFT size be 

factorable into relatively small numbers.  For example a 100-

point transform could be factored as 4x(5x5).  In this case it 

would be necessary to do 4 25-point transforms followed by 

25 4-point transforms.  Each 25-point transform would be 

most naturally done as 5 column transforms followed by 5 row 

transforms on the 5x5 matrix representing the 25-points.  An 

array with b=5 could be used and a control circuit built that 

would be responsible for generating the addresses and 

coefficients supplied to the SA.  For simple transforms, like 

the power-of-two examples (Section IV-B and C), finite state 

machines can be used.  For more complex examples like the 

LTE example (Section IV-D), more general loop based RTL 

code could be used with loop parameter values specified in a 

small ROM memory. 

D. Scaling 

The base-b architecture throughput can be scaled upward in 

two ways: (1) by choosing N3 to increase the linear length of 

the array [7] and (2) by simply replicating the array up to b 

times.  Approach (1) is simpler but less efficient since the 

stage 1 processing time does not decrease, whereas for (2) 

throughput is increased by b.  Both approaches can also be 

combined. 

IV. IMPLEMENTATION EXAMPLES 

A. Introduction 

In this section three very different FPGA implementations 

of the base-b architecture are described to demonstrate its 

range of use.  The first designs (Section IV-B) are fixed-size 

power-of-two FFTs that take computational advantage of the 

radix-4 butterfly matrix, in which case the LHS/RHS PE 

multipliers in Fig. 4 can be replaced by adders because CM1/2 

only contains {±1,±j}.  The second design (Section IV-C) is 

similar to the first, buts adds a requirement for run-time choice 

of FFT size.  For these two design types the SA FFT is 

compared to Altera’s commercially available FFT pipelined 

circuits (IP v10.1), since these have been optimized over 10 

years and are representative of  the fastest with the highest 

dynamic range of which we are aware. 

Finally, for the third example (Section IV-D) the focus was 

on a more complex, non-power-of-two design, one that uses 

mixed-radices, offers run-time FFT choice and yet has the a 

very simple programming model.   

B. 256-point and 1024-point "Streaming" (Normal Order In 

and Out) Fixed-size FFTs 

For these two transform sizes the FFT circuits were 

compiled using Altera’s software tools (Quartus II) with 

exactly the same settings (all synthesis options turned off) and 

the same target hardware (Stratix III EP3SE50F484C2 65 nm 

FPGA).  The SQNR results for the Altera circuits were 

obtained from a bit-accurate Matlab model created along with 

the circuit by the Altera FFT generators. Altera’s Timequest 

static timing analyzer was used to determine "worst case" 

maximum clock frequencies (Fmax) at 1.1V and 85C.  

Circuit comparisons shown in Table I are with Altera’s 

mixed radix-4/2 20-bit pipelined FFTs that use BFP (single 

exponent per FFT block) to achieve a similar SQNR as the SA 

FFT circuits.  Here the adaptive logic module (ALM) is the 

basic unit of a Stratix III FPGA (an 8-input "adaptive" LUT, 

two registers plus other logic). Fmax or clock rate is the same 

as the complex data sample rate. Table I shows that the SA 

FFTs use less logic and memory and still provide throughput 

rates that are 46%/37% higher for 256/1024-points. 

TABLE I. COMPARISON OF ALTERA AND SA FIXED-SIZE FFT CIRCUITS. 

 

Altera SA FFT Altera SA FFT 

  20-bits 16-bits 20-bits 16-bits 

Transform Size 256 256 1024 1024 

ALMs 4261 3982 4394 4331 

Memory Bits (K) 49 40.6 195 145 

Multipliers (18-bit) 24 33 24 33 

Fmax  (MHz) 387 566 382 524 

SQNR 76.6 86.7 81.3 82.8 

FFT time (µsec) 0.66 0.45 2.7 2.0 

C. Variable FFT 

Design Approach 

In this section a variable streaming FFT circuit is described 

that provides run-time choice of 128/256/512/1024/2048 



transform sizes as required for WiMax and LTE protocols.  

For this circuit with b=4 it was natural to choose a 

factorization with N3=16 for all transform sizes.  This choice 

leads to simple 4x4 SAs in Fig. 2-3 for the 16-point column 

transforms and processing using (1). Also all the desired 

twiddle factors WN can be conveniently found among the 

elements of W2048.   

After the column DFTs, best efficiency is achieved by 

factoring the DFT differently for each transform size.  The 

rows in Table II, “Stage 2a” and “Stage 2b”, show how each 

DFT transform of a matrix row of length N4 is performed in 

the SAs. The “4x2” means that an 8-point transform is done as 

a 4-point transform in the LHS SA followed by a 2-point 

transform in the RHS SA.  The “4” means the LHS SA only 

does the 4-point transforms and “16” means processing 

follows (1) and is conceptually identical to the row DFT 

processing described in stage 2 of Fig. 2-3.  For example to do 

a 2048-point transform, 128 16-point column DFTs are 

performed.  Then for the row transforms, 16 8-point 

transforms are computed in stage 2a using both LHS and RHS 

SAs, followed by 8 16-point DFTs using (1) in stage 2b.  

(Both stage 2a and b use similar “row DFT” flow patterns.)  

TABLE II. FACTORIZATIONS OF N4 USED FOR FIVE TRANSFORM SIZES, N. 

N 128 256 512 1024 2048 

N4 8 16 32 64 128 

Stage 2a 4x2 16 4x2 4 4x2 

Stage 2b - - 4 16 16 

 

Circuit Comparisons 

Table III, comparing variable FFT circuits (128-2048 

points), was put together using the same design software and 

target hardware as the fixed point designs.   Additionally, SA 

FFT circuit operation at 500MHz was demonstrated on an 

Altera Stratix III EP3SL150F1152C2 FPGA using a 

development board.  Fmax (clock speed) is the same as the 

complex data sample rate. 

TABLE III. COMPARISON OF VARIABLE SA AND ALTERA FFT CIRCUITS. 

 

SA FFT 

16bits in/30 bits out 

Altera 

16bits in/out 

ALMs/slices 4522 3826 

RAM Memory (K) 290 208 

Multipliers (18-bits) 33 36 

Fmax  (MHz) 510 315 

 

As can be seen in Table III, the variable SA FFT circuit 

uses 18%/39% more ALMs/memory, but the relative 

throughput is a substantial 62% better.  The Altera (non-

programmable) single-path radix 2
2
 delay-feedback (SDF) 

design is slower than Altera's fixed point FFT (Section IV B) 

because the 16-bit input word length grows to 30 bits at the 

output, so that the SQNR is as high as that for the SA FFT 

(~84db average).  Processing these longer word lengths slows 

down the Altera SDF speed.  Additionally, the SA FFT has 

built in support for the cyclic prefix generation and insertion 

needed for the targeted LTE/Wimax protocols, whereas the 

Altera circuit would require a completely separate 30-bit 

circuit to perform this function. Therefore, for the Altera 

circuit to support these protocols, more ALMs and memory 

would be required than indicated in Table III. 

D. Non-power-of-two Circuit 

1) Design Approach 

Here a circuit capable of computing at run-time any one of 

the 35 different DFT sizes used in the LTE SC-FDMA uplink 

protocol (12 to 1296 points) is described.  In this 

implementation the value b is chosen to be 6, so that SAs for 

b=5,4,3,2 are embedded as well. (The architecture is exactly 

the same as described for the power-of-two cases.) To make 

the circuit more directly comparable to other circuit 

implementations to which it is compared (Section IV-D-5), 

only a single linear PE row was used from the LHS and RHS 

SAs.  In other words each LHS, RHS and multiplier PE 

columns in the array (Fig. 2) is projected (collapsed vertically) 

onto PE row #1 in Fig. 3.  Thus, there are 6 RAM memories 

associated with LHS/RHS PEs and a single output buffer 

RAM. Also, a complex multiplier is used in each LHS/RHS 

PE (Fig. 4) because CM values are complex.  This linear SA 

emulates the operations of the 2-D SA of Fig. 2, but completes 

a DFT computation a factor of b times slower. 

2) On-the-fly-Twiddle Coefficient Calculation 

The algorithmic discussion in Section II-A describes how a 

twiddle factor (WN) computation must occur in between the 

column DFTs (stage 1) and the row DFTs (stage 2).  For a 

single DFT, or small number of DFTs, the twiddle coefficients 

could be stored in a small ROM; however, for a large number 

of DFT sizes the ROM size needed could be prohibitively 

large and effectively limit the number of DFT sizes supported.   

To address this twiddle storage issue we have adopted an 

approach based on a programmable on-the-fly-generation of 

the twiddle values for a particular DFT size.  This twiddle 

coefficient engine uses a single complex multiplier, a table of 

twiddle seed values, and a set of size parameters as a basis for 

doing this. The iterative equation      ( - )   , where 

   -      and    is a seed value, is used to generate values for 

a particular DFT size given the starting seed.     

For example in the implementation of the LTE SC-FDMA  

application the twiddle generation circuit required only 1024 

words of memory to hold all twiddle seeds needed for 35 DFT 

sizes. The logic needed to implement the entire programmable 

twiddle circuit is only ~10% of the circuit hardware.  

3) Example DFT Operation (N=540-point) 

The circuit implemented, shown in Fig. 5a, consists of 6x6 

(virtual) LHS and RHS SAs, so that  any DFT of size B≤6 can 

be computed in either by multiplying the data vector by the 

coefficient matrix  B
   
  

-  
    
B

 
           B-           B-     The 

matrices          in (1) contain one or more arrays of these 

coefficient matrices CB, e.g.,     [ B| B| ] and 

    [ B
   B

   ]  as shown in [7].     

Consider the example N=540=N3*N4.  Since our 

implementation consists of 6x6 SAs, it would be most 

efficient to choose the factorization N3*N4=36*15=6
2
*(3*5) 

because this makes best use of all the hardware.  In this case 

the processing consists of 15 36-point column DFTs followed 

by 36 15-point row DFTs. The input Xb is stored in the input 



buffers in such a way that it is accessible as a sequence of 

blocks Xbci, i=1..15 of 6x6 column data.  Then the 36-point 

column DFTs are done using (1) with 

M=N3=36=N1c*N2=N1c*b=6*6 and           B (B=6).  

Each Xbci enters the array at the bottom of the LHS SA (Fig. 2a 

and Fig.5a) and flows upward with systolic matrix-matrix 

multiplications performed as shown in Fig. 2a.  As each of 

these 36-point column DFTs are computed, they are multiplied 

by elements in the 36x15 twiddle matrix W520 (Fig. 3) which 

are generated on-the-fly.  During this processing stage all PEs 

are used with 100% efficiency. (As noted in Section IV-D-1, 

the implementation is a linear array that emulates this 2-D 

processing.) 

After twiddle multiplication by W520 , the multiplexor in Fig. 

3 is used to store data for the 15-point row DFTs in a way that 

they can be accessed as 3x5 data input blocks, Xbri, i=1..36, 

from the internal PE RAMs.  In particular each of the 6 PE 

virtual rows is responsible for storing 6 3x5 blocks of DFT 

row data in associated internal RAMs.  For the row DFTs not 

all the LHS/RHS PEs are used as shown in Fig. 5b.  Rather, as 

shown in Fig. 5b, the LHS side SA reads from RAMs in five 

of the six PE columns to do the 5-point transforms by 

multiplication of these data blocks by C5.  The multiplier array 

then multiplies these transform values arriving from the LHS 

array by appropriate elements of a 3x5 twiddle matrix stored 

in a small ROM. Finally, only 3 PE columns are used on the 

RHS array to perform all the 3 point transforms.  Results are 

stored in an output buffer and are output in normal order. 

4) Programming 

The base-6 circuit described here is “programmed” at a 

more abstract level than the base-4 circuits in Section IV B 

and C. It uses a single ROM or RAM memory to hold 

parameters that determine the specific factorizations and 

execution orderings used for loop index ranges in the verilog 

HDL coded control modules.  Consequently, any transform 

size consistent with the circuit base b can be computed and the 

number of different DFT sizes that can be supported 

(including powers-of-2) is only limited by the size of this 

parameter memory.  

5) Comparisons 

To compute transforms for N≠2
n
, a variety of mixed radix 

approaches have been used [10]-[16]) and systolic arrays 

(SAs) [4] have been proposed.  However, of these only the 

memory-based approaches [12] [15] [16] provide high speed 

and are capable of run-time choice of different non-power-of-

two DFTs. The speeds of the different designs are primarily 

related to the complexity of the butterfly unit design.  For 

example [12] uses the mixed radix approach with radices 

{2,3,5} so that N=2
n
*3

m
*5

p
 , where n,m,p are integers, based 

on a single pipelined, parallel butterfly unit that can do radix-

2,3,4 and 5 operations.  Alternatively, [16] uses a maximum 

radix size of 16 to reduce computation cycle count.      

Table IV is a technology independent comparison of these 

designs obtained from averages over the 35 different DFT 

LTE transform sizes (34 for the Altera [15] circuit).   In 

addition to the usual latency (cycles) and throughput numbers 

(1/cycles), the average time in cycles to compute a single LTE 

resource block, assuming 7 symbols duration in an uplink slot, 

has been added. (This latter more practical measure combines 

times associated with both latency and throughput.)  The SA 

FFT cycle counts are based on Modelsim gate level 

simulations.  

 
Fig. 5.  Virtual 2-D arrays used for row and column DFTs, N=520.   

TABLE IV. DFT PERFORMANCE BASED ON CYCLE COUNTS. 

  Average 

Latency 

Average 

Throughput 

Resource Block 

Computation    

Altera [15] 1.39 0.47 2.01 

Xilinx [12] 0.86 0.65 1.50 

SA FFT 1.00 1.00 1.00 

 

For ease of comparison in Table IV the results have been 

normalized to the corresponding base-6 SA FFT value.  As 

can been seen, the other designs are slower by ≥50% in the 

important resource block category. 

The technology comparisons for all the FPGA LTE circuits 

of which we are aware are shown in Table V. For Virtex-5 

FPGAs (also a 65nm technology) the basic logic unit is a logic 

element (LE) (one ALM 1.5 LE’s)
2
.  The Virtex 18/36K 

BRAMs are counted as equivalent to 2/4 Stratix 9K RAMs.  

The SA FFT circuit uses a smaller word length, but has a 

much more efficient hybrid FP scaling scheme, providing 64 

to 74db SQNR; the SQNR is not reported in the other designs.  

The SA FFT hardware entries came from Altera Quartus II 

design, synthesis and place-and-route tools with the Timequest 

static timing analyzer generating Fmax. Two Xilinx [12] 

designs, 8-bits and 18-bits, are used as these likely bracket the 

SA FFT SQNR values.  

Table V is only intended to provide a rough guide to 

implementation costs because of the different FPGAs used,  

lack of reported SQNR values, and different functionality (the 

Altera design doesn’t do all LTE sizes and doesn’t provide 

normal order outputs which would require more logic/memory 

and increase latency).  However, Table V shows the SA FFT 

 
2 Xilinx and Altera benchmark studies show 1 ALM=1.2 LEs (Xilinx white 

paper WP284 v1.0,  December 19, 2007, and 1 ALM=1.8 LEs  (Altera white 
paper WP-01007-2.1 Oct. 2007). Therefore, an average of 1.5 was used here. 



implementation is likely to be more compact than [12][16] 

designs in terms of FPGA logic and registers.  The Altera 

implementation uses less logic, but lacks complete 

functionality and is slower.  The SA FFT clock speed is lower 

than design examples in Section IV B and C largely due to 

desire for enhanced programmability, e.g., the critical paths 

were in the control unit rather than the SA.  It should be noted, 

however, that the SA LTE circuit was tested at 450 MHz on an 

Altera Stratix III EP3SL150F1152C2 FPGA using a 

development board. (Fmax in the tables here, at least for the 

Altera Quartus designs, represents a worst-case speed.) 

If the clock speeds from Table V are combined with cycle 

counts in Table IV, a good measure of performance can be 

obtained as shown in Table VI.  Here the average DFT 

computation times for a resource block are shown normalized 

to the SA FFT value and show speed-ups of >x2.  

It wasn't possible to include [16] in Table VI because only 

DFT throughputs were reported there, not latency values.  

However, if only throughput rates are compared, the SA FFT 

provides rates that are ~35% faster on average based on the 

cycle counts reported in [16]. 

TABLE V. LTE CIRCUIT TECHNOLOGY COMPARISONS  

Design FPGA Bits Scaling LUT 
ALM 
/LE 

RAM Mult Fmax 

9K eqv 18-bit (MHz) 

SA Stratix III 12 BFP/FP 3582 2733 30 60 394 

Xilinx [12] Virtex-5 8 BFP 3447 2955 20 16 318 

Xilinx [12] Virtex-5 18 BFP 4707 3864 20 16 276 

Altera [15] Stratix III 18 BFP 2600 n.a. 17 32 260 

Chen [16] Virtex-5 18 Scaling 7791 n.a. n.a. 44 123 

 

TABLE VI. LTE CIRCUIT THROUGHPUT COMPARISONS  

Design 
Average LTE Resource Block 

Compute Time 

SA FFT 1.0 

Xilinx [12] 2.1 

Altera [15] 3.0 

 

Note that [15] and [16] rely on the use of the prime factor 

algorithm, which avoids the need for twiddle multiplications.  

The SA FFT design does not use the prime factor approach 

and therefore provides more flexibility in choice of DFT sizes.  

Also, the SA FFT is programmable compared to [12][15][16] 

as it relies simply on entering parameter values in a ROM or 

RAM for each desired transform size.  

V. CONCLUSION 

We have demonstrated a new class of FFT architectures that 

combines the simplicity, regularity and interconnection 

locality of SAs, with the speed of pipeline architectures and 

flexibility/programmability of memory based architectures.  In 

particular the comparative benefits are: 

 

 Improved throughput rates resulting from high clock 

speeds (>500MHz for 65nm FPGA technologies), made 

possible by the inherently localized circuit operation 

which reduces routing delays.  For example the SA FFT 

compute times for LTE resource blocks are >x2 faster 

than the non-programmable circuits available from the 

two largest FPGA manufactures, Xilinx and Altera. 

 Suitability for a wide range of power-of-two and non-

power-of-two transform sizes.    

 High dynamic range as a result of a combined block 

floating point and floating point scaling. 

 Programmability. 

 Throughput scalability due to the use of systolic 

algorithms. 

 Built in cyclic prefix support for wireless protocols. 

 

Finally, circuit performance and verification have been 

confirmed in FPGA hardware as well as simulations for both 

power-of-two and non-power-of-two classes of circuits. By 

providing both high performance and programmability, such 

circuits can be used to meet the demanding FFT requirements 

for future 4
th

 generation (and beyond) wireless systems. 
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