
Presented at 2007 Hawaii International Conference on System Sciences: Mobile Computing Hardware Architectures

An FFT for Wireless Protocols

J. Greg Nash
Centar, Los Angeles, California, USA

jgregnash@centar.net, www.centar.net

Abstract

A different approach to parallel FFT

implementation is described here based on a new
matrix formulation of the discreet Fourier transform
(DFT) which decomposes it into structured sets of
multiplication-free 4-point DFTs. As a result, (1)
implementations are simple, locally connected and
structured, thereby allowing lower power and higher
performance mappings to modern FPGAs and ASICs;
(2) significant added functionality and flexibility
accrues from the inherent scalability; and (3) good
arithmetic efficiency is retained. These benefits would
be best suited to wireless devices where future 4G
protocols will utilize the FFT-based digital modulation
schemes orthogonal frequency division multiplexing
(OFDM) and scalable orthogonal frequency division
multiple access (OFDMA).

1. Introduction

The DFT is of central importance to a large variety
of signal processing applications: telecommunications,
radar (synthetic aperture radar, pulse compression,
range-Doppler imaging), antenna arrays (frequency
domain beamforming), navigation (GPS), speech
processing (speech recognition/synthesis), image
processing (digital still/video/cell-phone cameras, high-
definition television, video surveillance systems,
industrial inspection systems, medical imaging
devices), and sonar (LOFARgram) [1][2].

Here the application focus is communications,
where the FFT is rapidly gaining acceptance for use in
wireless devices via the specification of OFDM and
OFDMA modulation in future standards, e.g., 802.11n
(next generation wireless LAN), 802.16/e (wireless
fixed and mobile metropolitan area networks-WiMax),
802.20 (mobile broadband wireless access), 802.22
(wireless regional area networks), Flash-OFDM (Fast
Low-latency Access with Seamless Handoff OFDM),
3GPP LTE (3rd Generation Partnership Project, Long
Term Evolution), and HiperMAN (European
broadband fixed wireless) [3][4][6][7].

Future OFDM-based protocols require flexibility in
choosing the number of sub-carriers. Here a traditional
FFT suffers a power-of-two limitation that severely
restricts the number of attainable points and leads to a
highly non-uniform distribution. More control in the
choice of transform sizes can benefit overall system
performance as in the recently announced Chinese
Digital Multimedia Broadcasting Terrestrial/Handheld
standard (DMB-T/H) which uses OFDM based on
3780 sub-carriers rather than the power-of-two value
4096 [5]. Non-power-of-two transform sizes also have
been proposed in new wireless protocols mentioned
above that use OFDMA as in 802.22 (1024, 2048,
4096, 6144 points) [6] and 3GPP LTE (128, 256,
1024, 1536, 2048 points) [7].

Also, 4G OFDM-based protocols will demand very
high throughputs due to requirements for higher
bandwidths and multiple data streams associated with
multiple-input-multiple-output (MIMO) antennas.
Example estimates indicate a need for throughputs of
~10µsec per 1024-point FFT per OFDM stream [8].
With ≥4 streams [9], computation times less than
2.5µsec/1K FFT would then be necessary. High
dynamic ranges of 60-100db [10] could be needed as
well.

Therefore, to meet the signal processing
requirements of future wireless systems a parallel FFT
architecture is desired that

• doesn't restrict the DFT size N to be either

powers of a radix or factorable into relatively
prime numbers

• scales in a simple way to match required system
performance

• provides run-time transform size options
• offers high dynamic range for a given word

length
• is ideally suited to today's FPGA and ASIC

hardware
• provides low latency as well has high throughput
• accommodates 2-D as well as 1-D DFTs
• uses minimal power
• possesses all the locality, regularity and design

simplicity of systolic designs

Presented at 2007 Hawaii International Conference on System Sciences: Mobile Computing Hardware Architectures

In this paper a novel high-performance, scalable

FFT circuit architecture is described which provides
this level of generality. Its algorithmic underpinnings
are derived from a decimation in time and frequency of
the DFT which leads to a much simpler matrix based
formulation of the DFT [11]. It combines the
performance associated with the use of radix-4
butterflies in traditional FFTs with the generality and
design/implementation simplicity of systolic arrays.

In Section 2 previous work on FFT implementations
is summarized. Section 3 derives the proposed “base-
4” architecture, Section 4 provides details on an
example FPGA-based implementation, followed in
Section 5 by a conclusion.

2. Related work

Past systolic array designs that have been proposed
for computation of the DFT typically offer very high
performance in terms of throughput and transform sizes
aren’t limited to powers of 2. However, they are
inherently inefficient and require substantial hardware.
Approaches using linear arrays have been based on
direct algorithm implementations so that the number of
(complex) multiplies per DFT is O(N2) and the
throughput is O(N) arithmetic cycles per DFT. A 2-D
systolic array can improve efficiency when N can be
expressed as the product of two cofactors so that a
“row/column” DFT computation method can be used
[15]. If this is done, the throughput becomes ()O n for
an N-point 1-D DFT where 2N n= , and the number of
multiplies is reduced to 3()O n . For both 1-D and 2-D
systolic arrays the number of (complex) multipliers
required is N, so that for a 1024-point transform a
prohibitive number of multipliers (1024) would be
necessary.

Most parallel 1-D FFT designs have appeared in the
form of direct or modified implementations of
decimation-in-time or frequency flow graphs with

(log)rO N stages of computation, where r is the radix.
()O N delay registers are used to match the outputs and

inputs of the different stages. These “pipelined” FFTs
are computationally efficient and make effective use of
hardware, particularly multipliers. However, these
designs have disadvantages because for optimal
designs often each butterfly, delay/commutator, and
twiddle factor ROM has a different circuit design
and/or its operation varies from stage to stage. Also,
the multipliers do not always work at 100% efficiency,
the designs are limited to transform lengths that are
powers of 2 or 4, they are architecturally suited only

for a 1-D DFT or 2-D DFT but not both, and it is
difficult to build scalable designs because of their
irregularity and larger granularity. Finally, the latency
(number of clock cycles to do the first DFT in a series)
is high because of the deep pipeline depths used. A
good summary of these designs can be found in [16].
Some effort has been devoted to building systolic
pipelined versions of these designs to improve circuit
modularity and uniformity, many of which are
summarized in [17]; however, there have been no
demonstrations of improved performance.

The FFT design described here is intended to
provide a performance level better than that of
traditional pipelined FFTs, yet maintain the
design/implementation simplicity and functionality of
systolic arrays, e.g., the capability to perform non-
power-of-two DFT computations. An additional
motivation is that new FPGA hardware changes
previously established design tradeoffs. For example,
recent FPGA chips are offered with large numbers of
hardwired multipliers (704 18-bit multipliers in
Altera’s Stratix III EP3SE260) which consume less
than 10% of the overall floor-plan area. So rather than
minimizing use of multipliers, many times it is a better
strategy to use as many as desirable lest they be wasted.

3. Background

3.1. Algorithmic foundation of “base-4”
architecture

Here, the derivation of the new matrix equation for
the DFT is summarized. (More details can be found in
[11] and an alternate approach appears in [18].) The
derivations begins with the direct form DFT
representation

1

0
() ()

M
nk

M
n

Z k W X n
−

=
= ∑ (1)

where M is the transform length, X(n) are the time
domain input values, Z(k) are the frequency domain

outputs and (2 /)I M
MW e π−= . In matrix terms (1) may

be represented as

Z CX= (2)
where C is a coefficient matrix containing elements

nk
MW . If M can be factored as 1 2M N N= , then

applying the reindexings 1 1 2= +n n N n and

1 1 2= +k k N k with 1 10,1,..., 1n N= − ,

1 10,1,..., 1k N= − , 2 20,1,..., 1n N= − ,

Presented at 2007 Hawaii International Conference on System Sciences: Mobile Computing Hardware Architectures

2 20,1, , 1= −k N , it can be shown that if 1 2/N N is an
integer value (1) becomes

1

2

b M

M

b b
t

b b

Y W C X

Z C Y

= •= •= •= •

====
 (3)

where Wb is an 1 1xN N matrix with elements
1 1

1 1[,] n k
b MW k n W= , CM1 is an 1 2xN N coefficient matrix

with elements 2 1

21 1 2[,]= n k
M NC k n W , Xb is an

2 1xN N matrix with elements 2 1 1 1 2[,] ()= +bX n n X n N n ,

bY is a 1 1xN N matrix, CM2 is an 2 1xN N coefficient
matrix with elements 1 2

22 2 1[,]= n k
M NC k n W , Zb is an

2 1xN N matrix containing the transform outputs

2 1 1 2 1[,] ()= +bZ k k Z k k N , “• ” indicates element-by-
element multiplication and t denotes matrix
transposition. In (3) CM1 and CM2 contain 2

2/M N sub-

matrices
21 2| | ... |

t

B NC c c c ==== with the form

1 | | ...
tt t

M B BC C C ==== and [[[[]]]]2 | | ...M B BC C C==== due to the

periodicity of
2NW , and ci are constant vectors.

The “base” b for the architecture corresponds to the
value of N2 that is chosen in the reindexed formulation
(3). Here, N2=4 (“base-4”) has been chosen because
it represents a good tradeoff between circuit
performance and circuit complexity. This selection
results in

1 2 3 4

1 1 1 1
1 1, , ,1 1 1 1
1 1

I Ic c c c
I I

− −− −− −− − = = = == = = == = = == = = = − −− −− −− −

 − −− −− −− −

 and

1 1 1 1
1 1
1 1 1 1
1 1

B

I I
C

I I

 − − =
 − −
 − −

,

where BC above is the coefficient matrix for a 4-point
DFT and also describes a radix-4 decimation in time
butterfly. Consequently, in (3) the matrix
multiplications by CM1 and CM2 represent repeated use
of a radix-4 butterfly.

 The reindexed direct form expression (3) leads to
several novel computational features, compared to
previous systolic implementations, that are exploited in
realizing a base-4 circuit architecture:

1) Since it has been assumed that N2=4 and that
1 2/N N m= , where m is an integer, it follows that

2
1 2 2 16M N N mN m= = = , e.g., transform sizes

are only constrained to be integer multiples of 16.
2) In comparing (3) with (2), significant

computational advantages of the reindexed form
(3) can be seen. In (3) the matrix products 1M bC X

and 2
t

M bC Y involve only addition/subtraction
because the elements of 1MC and 2MC contain
only 1±±±± or imaginary numbers ±I, whereas the
product CX in (2) requires complex
multiplications.

3) The size of the coefficient matrix bW in (3) is
(/ 4) (/ 4)M M×××× vs. the M M×××× size of C in (2),
leading to a reduction in the number of overall
multiplications by x16 compared to (2).

4) Systolic implementations that involve flows of
coefficient data throughout the structure benefit
because the elements, 1[,]MC i j and 2[,]MC i j do not
impose significant bandwidth requirements (full
complex numbers are not used).

3.2. Base-4 architecture

The FFT circuit implementation makes use of two
levels of algorithm factorization. The first is the well-
known row/column factorization, N=Nr Nc,, where N is
the desired transform length and Nc and Nr are the
number of columns/rows. This approach requires three
basic steps:

1) Compute successively Nc column DFTs of length Nr

on column inputs Xci, i=1.. Nc, where the
computational flow is as shown in Fig. 1. The
column results Zci,i=1..Nc, are stored Nc values per
processing element (PE) in small right hand side
(RHS) PE memories (Fig. 2).

2) Multiply the Zci by the twiddle factors ,n k
NW by

moving the Zci values in systolic fashion from the
RHS array through a linear multiplier array to the
LHS array. These results are stored Nc values per
PE in small left hand side (LHS) memories and
become the row inputs Xri for the last step. (Without
this step a 2-D DFT is performed.)

3) Compute successively Nr row DFTs of length Nc on
row inputs Xri, i=1.. Nr. These are performed
logically in the same way as in step 1 using the
same (Nr/4) x 4 sized arrays and the FFT output is
Zri,i=1..Nr.

Presented at 2007 Hawaii International Conference on System Sciences: Mobile Computing Hardware Architectures

In general for the column DFTs, since CM1 is 1 x 4N
and Xci is 14x N , the matrix product CM1Xci can always
be computed on an N1 x 4 or (Nr/4) x 4 systolic array of
PEs (Nr=M=4N1), each containing nominally two
registers and an adder [12]. And since CM2 is 14x N and
Yci

t is N1 x N1, CM2Yci
t can also be computed on an N1 x

4 or (Nr/4) x 4 systolic array. Therefore, the basic
column DFT architecture is two (Nr/4) x 4 PE arrays,
with a single Nr/4 PE linear array in between the two to
do the element-by-element complex multiplies by Wb
and WN as shown in Fig. 2. The array is two
dimensional, but scales with transform size in only one
dimension (vertically in Fig. 2). The transpose in
between row and column DFTs is handled by
appropriate shifts in CM1, CM2 and Wb [11]. (This
architecture was automatically generated by a special
tool [19][20].)

In step 3 above the inputs Xri in the matrix multiply
CM1Xri are supplied internally from within the LHS PE
memories. Also, because in general Nc≠Nr, this step
would require arrays of size (Nc/4) x 4. Therefore,
matrix multiplications in step 3 use a different
computational flow. Specifically, this to map both the
CM1Xri and CM2Yri

t matrix multiplies to a single physical
PE row in the architecture used to do step 1 (Fig. 2).
This can be done by projecting the (Nc/4) x 4 2-D
matrix multiplies onto a 1-D linear systolic array
associated with a physical (step 1) PE row. The
number of row DFTs to be performed is Nr, so with
Nr/4 physical PE rows available, each PE row will
perform 4 row DFTs.

The term “base-4 architecture” refers to the array
structure that supports all three steps above. It consists
of the array structure shown in Fig. 2 plus a path for
RHS to LHS data movement for step 2 and some
additional control.

In the column/row factorization it follows that both
Nc and Nr must be multiples of 16 as noted in the
previous section. Then, since N=NrNc, transform
lengths are restricted to integer multiples of 256. This
restriction is the result of choosing the base b=4.
However, if b=2, then a similar analysis would show
that a base-2 circuit design could perform any
transform that is an integer multiple of 16.
Alternatively, if the first level factorization N= Nr Nc is
not used and b=4, the direct transform (3) itself can be
used so that attainable transform values would also be
integer multiples of 16. The same architecture supports
any of these implementation approaches, so there are a
number of options for matching desired and available
transform lengths.

Fig. 1. Functional operation for column/row

decomposition

From Fig. 2 it is clear that this architecture is very
simple in that it avoids the stage-to-stage irregularities
and the complex permutation networks, commutators
and butterflies of conventional pipelined FFT
implementations. Because each PE is simple and
interconnections are local, higher clock speeds are
possible. Throughputs are also increased because the
number of clock cycles per DFT is less than the
transform length N (Table 1). (For most pipelined
FFTs the throughput is equal to the transform length N
in cycles/DFT.)

Table 1. Base-4 transform length vs. throughput.

Points Nr Nc Throughput
(cycles/DFT)

256 16 16 220
512 32 16 284
768 32 24 460
1024 32 32 668
1536 48 32 796
2048 64 32 924

Presented at 2007 Hawaii International Conference on System Sciences: Mobile Computing Hardware Architectures

Fig. 2. Array design for Nr =M=16 showing PEs and data
flow during step 1. Here Wri represents row i of matrix

Wb. (Subscripts “b” not shown for z.)

3.3. Dynamic range extension

For OFDM-based applications high dynamic ranges

are required for a given word length because high
peak-to-average signals are generated. For this reason
and to avoid the considerable design complexity and
additional logic associated with fixed word length
circuits, a unique type of block floating point (BFP)
circuitry has been added and is briefly described here.

With the important processing confined locally to a
row, it is natural to provide separate BFP hardware for
each PE row as shown in the dashed boxes in Fig. 2.
Therefore, the base-4 circuit implementation provides
BFP operations as follows (steps below correspond to
those in Section 3.2):

Step 1: Each RHS PE stores an exponent associated

with an element of Zci.
Step 2: During twiddle multiplication, inputs

associated with the same row DFT are
normalized to the same exponent.

Step 3: Each RHS PE stores an exponent associated
with an element of Zri.

On output the step 3 exponents are combined with

the step 2 normalized exponents to produce a single
exponent associated with each FFT output value. Thus,
a BFP operation is performed on row DFT inputs and a
floating point (FP) operation on each row DFT output.
Note that for larger transform sizes the number of
BFP/FP regions increases because the number of
physical rows is increased.

3.4. 2-D DFTs and long length 1-D DFTs

Larger FFT implementations, specifically 2-D
arrays and transform sizes from ~8196-points and
higher, are of less relevance to the wireless
communications market. However, many other signal
processing applications make use of larger transform
sizes. One approach to doing this is to use a “third
level” of factorization. That is, when either Nr or Nc is
equal to or greater than 256, it becomes possible to
process that column or row as if were a separate 1-D
FFT. For example, if Nr = Nc = 256 (64K-point
transform), then each column i can factored again as Nci
= nr nc, where nr and nc are the new row and column
parameters associated with a single column. This third
level factorization preserves the small array size and
also reduces the relative overall number of
multiplications and keeps the precision good.

3.5. Partitioning

The scalability of the architecture is also reflected in
the ease with which FFTs can be partitioned to run on
fixed hardware so that OFDMA run-time transform
length options are possible. This possibility can be
seen if the DFT expression in (3) is rewritten as

| | ...
tt t

b b B B bY W C C X = •= •= •= • , where Xb is a row or

column input. This shows that CB is applied multiple
times to Xb, computing the same result each time.
Therefore, it is possible for a single set of four rows to
compute all necessary elements of Yb and then Zb. As
an example, consider a 1024-point transform
(Nr=Nc=32). This would nominally use LHR and RHS
8 x 4 PE arrays. However, if only four PE rows are
used, as shown in Fig. 2., then the computation could
be partitioned, first by calculating from (3)

11 18

41 48
00

b b

b b Bb b

y y

y y CW X

 = • = • = • = •

[[[[]]]]11 14 11 41

41 44 18 48
| 0 | 0

b b b b
B B

b b b b

z z y y
C C

z z y y

 ====

which provides half the answer, and then doing the

Presented at 2007 Hawaii International Conference on System Sciences: Mobile Computing Hardware Architectures

same calculation with 1 0 |
tt

M BC C ==== . Operationally,

this could be done by doing step 1 (Section 3.2) twice,
i.e., stream the input Xb through the four rows two
separate times, using different sets of coefficients Wri
each time. Then step 2 would take twice as long
because the array uses 4 rather than the 8 nominal PE
rows. Finally, step 3 can be done as before since all
the row DFT processing is still confined to a single PE
row. The main difference is that now each physical PE
row would do eight rather than four row transforms. In
this way a simple partitioning scheme is possible,
whereby any size FFT can be performed on any set or
sets of four PE rows. Other finer grain partitioning
schemes are possible as well. Also, various options
and associated tradeoffs with respect to memory usage
exist as to how to order steps 1-3 during the
computations.

An estimate of the approximate number of clock
cycles per transform can be obtained from multiplying
the values in Table I by the reduction in hardware used.
For example, from Table I the base-4 1024-point
transform in nominal array form (8 x 4 LHS and RHS
arrays) takes 668 clock cycles. Using a single four PE
row slice, as described above, the processing time
would be ~2 times slower, or ~2x668=1336 cycles.

3.6. Computational performance

3.6.1. Throughput. A throughput estimate can be
determined from the computation time of the three
basic operations: column DFTs, twiddle multiplication,
row DFTs. There is also a time delay associated with
the transitions between steps (Section 3.2). Since the
combined processing requires Nc column DFTs of
length Nr and Nr row DFTS of length Nc , the overall
throughput Thrpt in cycles per transform can be shown
to be

2(/ 4) 4(1) / 4c r c c
row DFTscolumn DFTs twiddle multiplication

Thrpt N N N N delay= + + + + .

The row DFT cycle count has a different form than the
column DFT count because the data movement has
been rearranged to accommodate the case in step 3
where Nc ≠Nr [11]. The delay in switching between to
and from the twiddle step 2 is twice the time to traverse
the right-left direction of the array or 6 24b = , where
the multiplier PE is assumed to contain b delay stages.
Therefore, the approximate throughput becomes

2/ 4 / 4 4 28 (/)c cThrpt N N N cycles DFT= + + + .

The throughput for a variety of FFT calculations using
this formula are shown in Table 1.

3.6.2. Latency. The latency L is the time it takes to

do the first FFT in a sequence FFTs. Consequently, it
is obtained by adding to the throughput the number of
cycles necessary to “fill” the pipeline. From Fig. 2 it
can be seen that the maximum length data path in the
array is the time to travel the length (of the array
(1 / 4 rN N= cycles), so that

rL N Thrpt= + .

4. 256-point FFT circuit example

4.1. Circuit description

To demonstrate this base-4 architecture a 256
point FFT design that accepts a continuous input
stream X(n), while generating a continuous output
stream Z(n) at the same rate (“streaming”) was chosen
since this mode is common to many signal processing
applications. The design has circuit pins for real and
imaginary inputs/outputs, Z/X, a single global reset, and
two clocks. The circuit architecture in terms of PEs
and multipliers is shown in Fig. 2.

To achieve a high dynamic range for OFDM
applications a 16-bit word length was chosen. A set of
62 256-point full-scale 16-bit “single tone” transform
inputs (random phase and random frequency with no
noise added) showed that the mean signal-to-
quantization-noise ratio was 89.0 db and the mean
maximum dynamic range (signal power to maximum
noise value ratio) was 96.3db.

The design was targeted to an Altera Stratix II
EP2S15 FPGA (90nm technology). Altera Quartus II
tools (v5.1) were used to design and evaluate the FFT
circuit. The base-4 circuit operation was verified by
comparing the Quartus simulator result with a Centar
bit-accurate simulation model. The Quartus II timing
analyzer finds the critical path that determines the
maximum clock frequencies. The circuit required 4496
adaptive logic modules and used 48.9K memory bits.

The maximum clock speed was 361MHz, which
corresponds to a throughput of 0.66µsec/FFT. The
number of clock cycles/FFT was 240 rather than the
220 in Table 1 because a simpler control scheme,
whereby a complete transform was completed before
starting a new one, was used. By overlapping the
start/finish of different transforms, a throughput closer
to 220 cycles/FFT could be expected.

Because the base-4 design computes FFTs using a
number of clock cycles that is less than the transform

Presented at 2007 Hawaii International Conference on System Sciences: Mobile Computing Hardware Architectures

size, a separate higher speed clock is used to read out
the data. The I/O clock then runs faster by a ratio of
256/240 or 385 MHz. Timing analysis shows that this
clock can run at speeds up to 399MHz.

4.2. Precision

The base-4 circuit is based on a matrix expression

that is not as efficient in a “complexity analysis” sense
as the traditional FFT. However, the base-4 matrix
expression (3) uses a form of “strength reduction” that
trades off multiplications for additions. Since
essentially all additions are done to full precision, the
round-off errors occur primarily in the multiplications,
which are already reduced considerably in number
compared to the usual DFT matrix expression Z=CX in
(2). For example, the total number of base-4
multiplications performed for a 1024-point FFT is
approximately the same as for a traditional 1024-point
radix-2 FFT. The actual measured precision for a
1024-point transform, shown in Table 2, based on a
large number of random (real and complex) input data
sets, shows that the 16-bit base-4 FFT has a factor of
~4 better precision than a 16-bit Altera streaming BFP
FFT circuit and is within a factor of ~2 of that for a 20-
bit Altera FFT circuit. In this case bit-accurate Altera
FFT Matlab circuit models were used that are
generated from Altera’s Megacore (v2.2.0) utility.

Table 2. Measured precision for 1024-point FFTs.

Error
(() /x x x−)

Altera
16-bit

Altera
20-bit

Base-4
16-bit

Mean 0.00038 -0.000039 0.000097
Standard
Deviation 0.00118 0.000217 0.000412

Minimum
Error -0.0292 -0.01008 -0.01556

Maximum
Error 0.0192 0.00426 0.0283

4.3. Scaling

For DSP applications in general, and wireless
applications in particular, an important system issue is
that of matching required DSP system throughput to
available hardware resources, because hardware
translates directly to cost and power. The proposed
FFT architecture described here is fundamentally
scalable in that it is based on a matrix representation of
the DFT (3), where larger DFT matrices correspond
directly to larger circuit arrays as described in Section
3.2. One way of achieving different resource-speed

tradeoffs to meet such throughput challenges is to
simply change Nr and Nc keeping N the same. For
example, a 1024 point FFT could be computed using
three different sets of values a shown in Table 3. Here,
the transform time can be varied by a factor of ~4 in
this simple way.

Table 3. Example of estimated performance for

scaling options obtained by varying Nr and Nc , keeping
N the same. (The number of real multipliers is Nr.)

Nr
(multipliers)

Nc Transform
Size

Throughput
(cycles/DFT)

32 32 1024 688
16 64 1024 1576
64 16 1024 424

4.4. Power dissipation

Power dissipation is a critical parameter for mobile
wireless systems. The base-4 architecture already
achieves low power by

1. Use of many small memories (one per PE), so
that they are both low power and fast. (Only
14% of the total circuit power dissipation comes
from the memories.)

2. Reuse of data flowing through registers (systolic
processing) so that unnecessary memory reads
and writes are avoided.

3. Localized interconnects to minimize wiring
overhead. (Total interconnect dynamic power is
only 46% of the total power for the 256-point
circuit.)

Power dissipation was 2.4W for the 256-point FFT,

corresponding to 1611nJ/FFT. By gating unused
circuitry it is estimated that power dissipation could be
further reduced by 10-15%.

5. Summary

The base-4 FFT architecture is intended to strike a
balance between the flexibility of direct systolic
designs and the computational efficiency of a pipelined
designs. In this way fast, regular and scalable
implementations are possible that have the necessary
functionality to support OFDMA applications. In
particular the ability to partition FFTs on to a fixed
array size (chosen to meet system throughputs) allows
different transform sizes to execute dynamically on the
same hardware. Also, non-power-of-two computations
are possible. A 256 point FFT circuit implementation
example was described that provides a level

Presented at 2007 Hawaii International Conference on System Sciences: Mobile Computing Hardware Architectures

performance higher than other 90nm traditional
pipelined FFTs of which we are aware.

6. References

[1] Ronald N. Bracewell, The Fourier Transform and Its

Applications, 3rd Edition, McGraw-Hill, 1999.
[2] E. Oran Brigham, Fast Fourier Transform and Its

Applications, Prentice-Hall, 1988.
[3] Hui Liu, Guoqing Li, OFDM-Based Broadband

Wireless Networks: Design and Optimization,
Cambridge University Press, 2005.

[4] http://www.ieee802.org/20/
[5] Zhi-Xing Yang, Yu-Peng Hu, Chang-Yong Pan, and

Lin Yang, “Design of a 3780-point IFFT processor for
TDS-OFDM,”, IEEE Trans. Broadcasting, Vol. 48,
pp.57-61, Mar. 2002.

[6] A PHY/MAC Proposal IEEE 802.22 WRAN Systems
(http://www.ieee802.org/22/Meeting_documents/2006_
Mar/22-06-0005-05-0000_ETRI-FT-I2R-Motorola-
Philips-Samsung-Thomson_Proposal.ppt).

[7] Physical layer aspects for evolved Universal Terrestrial
Radio Access, 3GPP TR 25.814 V7.1.0, Oct. 2, 2006.
(http://www.3gpp.org/ftp/Specs/archive/25_series/25.81
4/)

[8] Angela Doufexi and Simon Armour, “Design
considerations and physical layer performance results
for a 4G OFDMA system employing dynamic subcarrier
allocation,” Proc. IEEE 16th Int. Symp. On Personal,
Indoor and Mobile Radio Communications, pp. 357-
361, 2005.

[9] Ludwig Schwoerer and Ernst Zielinski, “Optimized FFT
Architecture for MIMO Applications,” Proc. 13th
European Signal Processing Conference
(EUSIPCO2005).
(http://www.arehna.di.uoa.gr/Eusipco2005/defevent/pap
ers/cr1361.pdf.)

[10] Bosco Leung and Behzad Razavi, RF Microelectronics.
Prentice Hall, 2004.

[11] J. Greg Nash, “Computationally efficient systolic
architecture for computing the discrete Fourier
transform”, IEEE Trans. Signal Processing, Vol. 53, pp.
4640-4651, Dec. 2005.

[12] S.Y. Kung, VLSI Array Processors, Prentice Hall,
1988.

[13] Chih Kuo, Ching-Hua Wen, Chih-Hsiu Lin, and An-
Yeu Wu, "VLSI design of a variable-length FFT/IFFT
processor for OFDM-Based communication systems,"
EURASIP Journal on Applied Signal Processing
2003:13, pp. 1306–1316.

[14] Zhong Hu and Honghui Wan, “A novel generic fast
Fourier transform pruning technique and complexity
analysis,” IEEE Trans Signal Proc., Vol. 53, NO. 1,
Jan. 2005, pp. 274-282.

[15] S. He and M. Torkelson, "A Systolic array
implementation of common factor algorithm to compute
DFT," Proc. Int. Symp. Parallel Architectures,
Algorithms and Networks, Kanazawa, Japan, pp. 374-
381, 1994.

[16] S. He and M. Torkelson, "A new approach to pipeline
FFT processors," Proc. Int. Conf. Parallel Processing
(IPPS 96), pp. 766-770.

[17] V. Boriakoff, “FFT computation with systolic arrays, a
new architecture”, IEEE Trans. Circuits Systems II, Vol.
41, pp.278-284, Apr. 1994.

[18] J. Greg Nash, "Hardware efficient base-4 systolic
architecture for computing the discrete Fourier
transform," Proc. IEEE Workshop on Signal Processing
Systems, pp.87-92, 2002.

[19] J. Greg Nash, "Automatic generation of systolic array
designs for reconfigurable computing,” Proc. Int. Conf.
Engineering of Reconfigurable Systems and Algorithms
(ERSA 02), pp.176-182, CSREA Press, 2002.

[20] J. Greg Nash, "Constraint directed CAD tool for
automatic latency-optimal implementation of 1-D and 2-
D Fourier transforms ", Proc. SPIE ITCom,
Reconfigurable Technology: FPGAs and
Reconfigurable Processors for Computing and
Communications IV, Vol. 4867, pp. 8-19, July 2002.

	1. Introduction
	2. Related work
	3. Background
	3.1. Algorithmic foundation of “base-4” architecture
	3.2. Base-4 architecture
	3.3. Dynamic range extension
	3.4. 2-D DFTs and long length 1-D DFTs
	3.5. Partitioning
	3.6. Computational performance

	4. 256-point FFT circuit example
	4.1. Circuit description
	4.2. Precision
	4.3. Scaling
	4.4. Power dissipation

	5. Summary
	6. References

