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Abstract: 
    A new high-performance systolic fast Fourier transform 
(FFT) circuit is described which supports transform lengths 
that aren't powers of two, provides low latency as well as 
high throughput and can do both 1-D and 2-D discrete 
Fourier transforms (DFTs). It is scalable so that any 
implementation can do any size FFT and it is inherently 
faster than most commercial pipelined FFTs because it uses 
fewer clock cylces per transform and runs at higher clock 
rates.  Design, testing and maintainability are simplified 
because the architecture is based primarily on arrays of 
identical simple processing elements that contain a couple 
of registers and an adder.  A design example is provided of 
256-point streaming circuit that can run at a complex 
sample rate of 399MHz. 

I. INTRODUCTION 

The DFT is one of the prominent signal processing 
algorithms, being found in applications such as   
telecommunications, radar, beamforming, acoustics, 
seismic analysis, speech processing (spectrograms), 
medical signal processing, multi-media, and image 
processing [5],[6]. Many of these applications require "real-
time" processing, so that special purpose parallel circuitry 
for computing the DFT is necessary.  Here a high 
performance FFT circuit is described that offers the 
considerable functionality needed to meet the needs of such 
a wide variety of applications. 

In Section II previous work related to systolic and 
parallel computation of the FFT is summarized.  In Section 
III a new computationally simpler matrix based 
representation of the DFT is discussed and is mapped in  
Section IV into a block based systolic implementation of 
the 1-D DFT.  Section V  summarizes how the 
“row/column factorization” technique can be used to 
increase computationally efficiency and leads to the “base-
4” architecture.  Section VI provides a parameterized 
formulation of compuational performance.  Section VII 
compares the base-4 design to other systolic and pipelined 
FFT implementations and Section VIII describes the design 
of a 256-point streaming FFT. 

II. RELATED WORK 

Past systolic array designs that have been proposed for 
computation of the DFT [11] typically offer very high 

performance in terms of throughput and transform sizes 
aren’t limited to powers of 2. However, they are inherently 
inefficient and require substantial hardware. Approaches 
using linear arrays have been based on direct algorithm 
implementations so that the number of (complex) multiplies 
per DFT is 2( )O N , where N is the transform size, and the 
throughput is ( )O N  arithmetic cycles per DFT [1]. A 2-D 
systolic array can improve efficiency when N can be 
expressed as the product of two cofactors so that a 
“row/column” DFT computation method can be used [12].  
If this is done, the throughput becomes ( )O n for an N-point 
1-D DFT where 2N n= , and the number of multiplies is 
reduced to 3( )O n .  For both 1-D and 2-D systolic arrays the 
number of multipliers required is N , so that for a 1024 
point transform a prohibitive number of multipliers (1024) 
would be necessary. 

Most high performance 1-D FFT designs have 
appeared in the form of direct or modified implementations 
of decimation-in-time or frequency flow graphs with 

(log )rO N  stages of computation, where r is the radix,  that 
use ( )O N delay stages that are used to match outputs and 
inputs of the different computational stages. These 
“pipelined” FFTs are very computationally efficient and 
make the effective use of hardware, particularly multipliers.  
However, these designs have disadvantages because for 
optimal designs often each butterfly, delay/commutator, and 
twiddle factor ROM has a different circuit design and/or its 
operation varies from stage to stage. Also, the multipliers 
do not always work at 100% efficiency, the designs are 
limited to transform lengths that are powers of 2 or 4, they 
are architecturally suited only for a 1-D DFT or 2-D DFT 
but not both, and it is difficult to build scalable designs 
because of their irregularity and larger granularity.  Finally, 
the latency (number of clock cycles to do the first DFT in a 
series) is high because of the deep pipeline depths ( ( )O N ) 
used.  A good summary of these designs can be found in  
[9].  Some effort has been devoted to building systolic 
pipelined versions of these designs to improve circuit 
modularity and uniformity, many of which are summarized 
in [4]. 

The base-4 FFT design described here is intended to 
provide a performance level better than that of traditional 
pipelined FFTs, yet maintain the design/implementation 
simplicity and functionality of systolic arrays, e.g., the 
capapbility to perform non-power-of-two DFT 
comptuations.  An additional motivation is that new FPGA 
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hardware changes previously established design tradeoffs.  
For example, recent FPGA chips are offered with large 
numbers of hardwired complex multipliers (>20) which 
consume less than 10% of the overall floor-plan area.  This 
trend of embedding additional functionality in FPGA 
hardware will continue and consequently will require 
different tradeoffs in the way circuits are designed. 

III. DIRECT FORM DFT DERIVATION 

The base-4 architecture is derived from the direct form 
DFT representation  
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where X(n) are the time domain input values, Z(k) are the 
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The “base” b for the architecture corresponds to the  
value of N2 that is chosen for reindexed formulation (3).   
Here, we have chosen N2=4 because it represents a good 
tradeoff between circuit performance and circuit  
complexity.  This selection results in 
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where BC  above is the coefficient matrix for a 4-point DFT 
and also describes a radix-4 decimation in time butterfly. 
  The reindexed direct form expresssion (3) leads to several  
advantageous computational features, compared to previous 
systolic implementations, that are exploited in realizing the 
base-4 architecture described in the next sections: 
 
1. Since it has been assumed that N2=4 and that 

1 2/N N m= , where m is an integer, it follows that 
2

1 2 2 16N N N mN m= = = , e.g., transform sizes  are 
only constrained to be integer multiples of 16. 

2. In (3) Yb  and Zb are both obtained from a series of 
simple 4- point transforms.   

3. In comparing (3) with (2),  significant computational 
advantages of the reindexed form (3) can be seen.  In 
(3) the matrix products 1MC X  and 2

t
MC Y  involve 

only addition/subtraction because the elements of  
1MC and 2MC contain only 1± or j± , whereas the 

product CX in (2) requires complex multiplications.   
4. The size of the coefficient matrix MW  in (3) is 

( / 4) ( / 4)N N×  vs. the N N× size of C in (2), leading to 
a reduction in the number of overall multiplications in 
by x16 compared to (2).   

5. Systolic implementations that involve flows of 
coefficient data throughout the structure benefit 
because the elements, 1[ , ]MC i j  and 2[ , ]MC i j do not 
impose significant bandwidth requirements (full 
complex numbers are not used). 

IV. DIRECT FORM DFT ARCHITECTURE 

This section describes direct form systolic designs for 
calculating the DFT based on the reindexed expression (3).  
Because there a large number of possible systolic 
architectures that can be obtained from (3), an automated 
CAD tool, Symbolic Parallel Algorithm Development 
Environment (SPADE), was used to make the choices.  
SPADE was developed to allow a designer to easily and 
rapidly explore the design space of various systolic 
algorithm implementations so that system tradeoffs can be 
efficiently analyzed.  SPADE allows a user to specify his 
algorithm with traditional high-level code, set some 
architectural constraints and then view the results in a 
meaningful graphic form.  More details on mapping and use 
of constraints within SPADE can be found in[13] [14].     
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The main constraint imposed using SPADE in making 
design choices was that the systolic array be linear or 
pseudo-linear (a 2-D array which is fixed in one dimension) 
because the target hardware was the new generation of 
FPGA devices which are constructed with linear arrays of 
multiplier and memory cells embedded in their logic fabric.  
This hardware organization also minimizes the necessity to 
keep all memory structures at the boundary of the array. 
With this basic constraint designs were looked for that 
maximize throughput.  

SPADE found two unique throughput and latency 
optimal systolic arrays. These are shown in Fig. 1a and b 
and labeled according to the elements of (3).  (The systolic 
array designs in Fig. 1 can be mathematically characterized 
via transformation matrices and data flow directions for 
variables mentioned earlier as described in more detail in 
[15]).  Each of the two array designs has three basic 
components: 
a) A 4 x N/4 array of adder/subtractor processing 

elements (PEs) that perform the computation 1M bC X  
by systolic matrix-matrix multiplication. 

b) A linear array of N/4 multipliers that performs the 
element-by-element multiplies leading to 

1b M M bY W C X= •  
c) A 4 x N/4 array of adder/subtractor PEs that performs 

the computation 2M bC Y , again by systolic matrix-
matrix multiplication. 
In each pseudo-linear design data flows from a) to b) to 

c).  The main difference between the two designs is that for 
one (Fig. 1a) the input source is in a FIFO memory at the 
edge of the array and the transform result remains within 
the array after processing, whereas for the other design 
(Fig. 1b)  the input source is internal to the array and the 
output is collected in a FIFO memory at the edge of the 
array.  Each PE associated with a) and c) contains an 
adder/subtractor and nominally two registers, whereas each 
PE in component b) contains a complex multiplier and an 
amount of coefficient memory that depends on the 
transform size. Each design in Fig. 1 each has a latency 

2 / 4L N b b= + + cycles and a throughput /T N b= cycles per 
DFT, where a cycle is the time for each PE to perform 
either an addition or multiplication.  

The architectures in Fig. 2 were chosen by SPADE 
because of their suitability to FPGA structures. For 
example, most of the PEs in Fig.1 consist of a couple of 
registers and an adder/subtractor.  This type of element is 
part of the basic hardware fabric in FPGAs made by 
popular vendors such as Altera and Xilinx.  Also, hardwired 
complex multipliers now embedded in the FPGA fabric 
result in multiply times that are comparable to adder times 
so that the cycle times in a) and c) vs b) are balanced.  
Finally,  the localized computations and data movement of 
the arrays place minimal demands on valuable interconnect 
fabric, a critical issue in designing FPGA circuitry. 

 
 
Figure 1. Two different space-time views of systolic designs, (a) 
and (b), and their corresponding PE arrays on the right (N=32).  
The labeling is consistent with (3).  Here WM has been mapped to 
the same locations as Y and is not shown. The “intermediate” 
variables IM1 and IM2 are created in SPADE to perform the 
running sums associated the matrix multiplication a) and c).  

V. CIRCUIT DESIGN 

The designs in Fig. 1a and 1b provide arithmetic and 
architectural efficiencies compared to other systolic arrays 
described in Section II; however, they still represent a direct 
DFT implementations because the transform time is 
proportional to N.  To further increase performance while 
minimizing hardware penalties, a second level factorization, 
N=N3 N4, is applied to the overall computation using the 
traditional row/column approach.  This factorization 
requires computation of two sets of DFTs, N3 transforms of 
length N4 (stage 1) and N4 transforms of length N3 (stage 2).  
Each transform (of a row or column) in both stages is 
computed using the direct base-4 architecture described in 
the previous section. 

Both the systolic designs from Fig. 1 are necessary for 
this factorization, that in Fig. 1a for stage 1 and that in 
Fig.1b for stage 2. In this way the stage 1 inputs are 
appropriately at the edges of the array, while the output of 
stage 1 matches the location of the inputs to stage 2.  The 
main architectural addition is a problem size dependent 
amount of internal memory with which to store the stage 1 
DFT results.  Since the two array designs in Fig. 1 are very 
similar and use the same types of PEs, it is straightforward 
to just use one physical array in the circuit and have it 
mimic the operations of the arrays in Fig. 1a and 1b [15]. 

Since the computation time (Section III) of either a row 
or column is 16m, where m is an integer, the computation 
time associated with the factorization N=N3 N4 will be 
N=n256, where n is an integer.  That is, this factorization 
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imposes the restriction that transform lengths N must be a 
multiple of 256. 

In between stage 1 and stage 2 each of the N points is 
multiplied by an appropriate twiddle factor, ,i k

NW , i=1..N3,  
k=1..N4 in the multiplier PEs of Fig. 2.  FPGA hardwired 
multipliers are pipelined and it will be assumed that a four 
stage pipeline is used, matching the four pipeline stages of 
the rhs array PEs.  In this way every four cycles a new set 
of four twiddle updated coefficients are written while a new 
set of  coefficients to be updated are read (assuming 
memories in the rhs array are dual ported).  The total 
computation time for this twiddle step using the  N3/b 
multiplier PEs is then N3 N4 /( N3/b)+b = b( N4 +1) cycles. 

VI. COMPUTATIONAL PERFORMANCE 

A. Throughput 
A throughput estimate can be determined from the 

computation time of the three basic operations: column 
DFTs, twiddle multiplication, row DFTs.  There is also a 
time delay associated with the switch from solution of Fig. 
1a to Fig. 1b.  Since the combined processing requires N3 
column DFTs of length N4  and N4 row DFTS of length N3 , 
the overall throughput Thrpt in cycles per transform is 

 
2

4 3 4 4( / 4) 4( 1) / 4 /
row DFTstwiddle multiplicationcolumn DFTs

Thrpt N N N N row col delay= + + + +  

where the number of cycles 4( 1)b N +  for twiddle 
multiplication from Section V has been inserted.  The row 
DFT cycle count has a different form than the column DFT 
count because the data movement has been rearranged to 
accommodate the case where N3  and N4 are not equal and 
the two logical array sizes in Fig. 1a and 1b are not the 
same [15].  The delay in switching between column and 
row processing is twice the time to traverse the East-West 
direction of the array or 6 24b = .  Therefore, the 
approximage throughput becomes 
 

2
4 4/ 4 / 4 4 28 ( / )Thrpt N N N cycles DFT= + + + . 

 
The throughput for a variety of FFT calculations using this 
formula are shown in Table 1, along with the corresponding 
amount of hardware used.  
 
 

 
Table 1.  Estimated nominal throughput and hardware used in 

base-4 FFT. 
 

B. Latency 
The latency L is the time it takes to do the first FFT in 

a sequence FFTs.  Consequently, it is obtained by adding to 
the throughput the number of cycles necessary to “fill” the 
pipeline.  From Fig. 1a and 1b it can be seen that the 
maximum length data path in the array is the time to travel 
the length (of the array ( 3 / 4N  cycles), so that 

3 / 4L N Thrpt= + . 

VII. DESIGN COMPARISONS 

A. Systolic Arrays 
As described in Section II, a variety of systolic array 

designs, characterized by use of uniform arrays of fine-
grained PEs, have been proposed for computation of the 
DFT.  The most common are of two basic types, linear 
systolic arrays and those based on use of a row/column 
factorization of N similar to that described in Section V.  A 
comparison of the design parameters presented in the first 
three lines of Table 2 show that the base-4 FFT offers the 
following advantages: 
1. Smaller granularity: Because PE size is defined primarily 

by additions rather than multiplier-adds, as is the case for 
most previous systolic designs, higher speeds are possible 
because the shorter wiring paths between PEs leads to 
lower gate delays and the arithmetic is simpler.  

2. Reduction in hardware complexity:   Table 2 shows that 
most past systolic architectures require one multiplier-
adder combination per FFT point.  Therefore, a 1024-
point transform would require 1024 multipliers vs. only 8 
for the base-4 FFT design (Table 1). 

3. Computational efficiency: This feature derives from two 
different levels factorization.  Because the designs in 
Table 3 are so structurally different, it useful to compare 
them based on an area-time product.  In each case the PE 
structures are simple and tend to be dominated by 
arithmetic units, so an estimate of area can be made by 
using the number of multipliers and adders as a proxy for 
area.  In order to determine the computing area an 
assumption was made that the area of an adder was ~¼ 
that of a multiplier.  This is a good approximation for 
FPGA hardware; for example the floor-plan of the Altera 
Stratix™ FPGA assigns four reconfigurable logic array 
blocks (LABs) to a 20-bit complex adder, whereas the 
18-bit hardwired complex multiplier consumes 
approximately the space of 16 LABs.  For the measure of 
time throughput is the most useful for general signal 
processing.  From Table 2, the base-4 FFT area-time 
product is ~ 3 /8 3 21N N N N+ +  vs. 2N and 
5 /2+ 5 /4N N N for the 1-D direct and 2-D FFT.  
Therefore, the base-4 design improves the area-
throughput product by factors of approximately 4,5 and 6 
for 256, 1024 and 4096 point transforms compared to the 
2-D systolic FFT, and more for the direct methods. 

4. Latency and Throughput:  Most previous systolic designs 
are based on a computation performed by one pass 
through a single architecture.  For large transforms this 
implies a large pipeline that takes significant time to fill 
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and empty, as reflected in Table 2.  Alternatively, the 
base-4 FFT design is based on many passes through a 
smaller architecture, hence the fill/empty times are small. 

There have been a variety of more course-grained 
systolic FFT implementations that are based on FFT flow 
graphs which permit a high degree of stage-to-stage 
regularity, two of which are shown in Table 2.  
Consequently, these have characteristics that are similar to 
other pipelined FFTs.  

B. Pipelined FFTs 
Comparison of the proposed base-4 FFT design to the 

many pipelined FFT designs that have been proposed is 
more difficult because they are typically comprised of far 
fewer, more course-grained modules, each with a larger 
number of different components and there are a large 
number of architectural variations.  However, a few of the 
more recent designs that have been implemented in 
hardware are provided in Table 2.  In general the base-4 
design offers higher throughput and lower latency, but uses 
more hardware. 

Compared to most commercially available pipelined 
FFTs which have Thrpt=N and L=2*N, the base-4 
architecture possesses the following advantages: 

• It can compute the DFT for any N-point sequence 
divisible by 256.  In contrast traditional FFT circuits 
require N to be a power of two, which limits the 
number of reachable values of N and their spacing 
uniformity. 

• Any FFT implementation can do any FFT size. This 
capability makes it possible to match circuit 
architecture to required application throughputs. 

• It uses fewer clock cycles per transform. The number 
of clock cycles per DFT is ~ / 2 4 40N N+ +  
compared to N for a typical pipeline FFT. 

• Higher clock rates are possible  because  
 the circuit consists of a regular array of locally 

connected small processing elements, each PE 
containing only a few registers, an adder and 
memory.  

 the circuit architecture matches that of FPGAs with 
their embedded linear arrays of hardwired 
multipliers and memory. 

 there are only three global lines (2 clocks and a 
global clear) 

 a large number of smaller, faster and more power 
efficient memories are used 

• It offers better dynamic range (DR) and signal-to-noise 
(S/N) due to an enhanced BFP circuitry. This feature is 
a result of having many different block floating point 
circuit regions, i.e., each region has its own exponent. 

• It provides low latency as well as high throughput.  
Computational latency in cycles/DFT is only slightly 
higher than the throughput measure. 

• The design is scalable and reconfigurable. Larger 
FFTs are obtained by replicating identical blocks of 
PEs 

• It can do both 1-D and 2-D DFTs. 

• Design, testing and maintainability are simplified 
because the circuit is based on only two small PE 
types.  

VIII. 256 POINT FFT EXAMPLE 

To demonstrate this base-4 architecture an FFT design 
that accepts a continuous input stream X(n), while 
generating a continuous output stream Z(n) at the same rate 
(“streaming”) was chosen since this mode is common to 
many signal processing applications.  To add application 
generality a BFP capability was added and a word size of 
16-bits was chosen since this a common choice.  The design 
has circuit pins for real and imaginary inputs/outputs, Z/X, a 
single global reset, and two clocks.   Because the base-4 
design computes FFTs using a number of clock cycles that 
is less than the transform size, a separate higher speed clock 
is used to read out the data. 

An evaluation of the base-4 design is best done by 
comparison with another start-of-art pipelined FFT design 
built to the same specifications, using exactly the same 
underlying hardware.  For this purpose a streaming BFP 
256-point FFT design from Altera was chosen (FFT 
v2.2.0), since their pipelined streaming BFP FFT circuits 
are the fastest of which we are aware.  Both designs were 
targeted to an Altera Stratix II EP2S15F484C3 FPGA.  
Altera Quartus II tools (v5.1) were used to design and 
evaluate the two FFT circuits.  The base-4 circuit operation 
was verified by comparing the Quartus simulator result with 
a Centar bit-accurate simulation model.  The Quartus II 
timing analyzer finds the critical path that determines the 
maximum clock frequencies.   

Because the base-4 design provides higher dynamic 
range for a given bit-length, a 20-bit Altera FFT was used 
in the comparison.  For example, a set of 62 256-point 
transforms on 16-bit “single tone” data (random phase and 
random frequency with no noise added) show that for the 
base-4 circuit the mean signal-to-noise ratio was 89.0 db 
and the dynamic range was 96.3db.  This compares to 
86.7db and 98.2db obtained on the same data using an 
equivalent Altera 20-bit streaming block floating point 
circuit. The results for the Altera circuit were obtained from 
a bit-accurate Matlab model that’s created by the Altera 
FFT generator.  There was no noise added to the single 
frequency inputs, so the “noise” represents only internally 
generated round-off noise.  

For the Altera design the maximum complex sample 
rate was 302 MHz vs. 399 MHz for the base-4 circuit.  The 
corresponding transform times are 0.85µsec vs 0.64µsec.  

 This comparison shows that for a 256-point transform 
the base-4 architecture can provide a better throughput than 
traditional pipelined FFTs for applications that require a 
high dynamic range. Similar comparisons can be expected 
for other FFT sizes.  For example a base-4 1024-point 
circuit uses only ~680 clock cycles per DFT vs. 1024 for 
pipelined FFTs.  Because the base-4 structure is local and 
regular, similar clock speeds should be expected, yielding a 
complex sample rate of ~542 MHz.  Alternatively, timing 
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analyses of even a smaller 16-bit Altera 1024-pt FFT 
indicate the complex sample rate would only be  ~325MHz. 
 

IX. SUMMARY 

The base-4 FFT design is intended to strike a balance 
between the flexibility of direct systolic designs and the 
computational efficiency of a pipelined designs, so that fast, 
but regular and scalable implementations are possible for 
performing both 1-D and 2-D DFTs.  It should be noted that 
other base-4 FFT designs are possible and these depend on      
the application environment and target hardware.  For 
example, modifications are possible to reduce power  

    

dissipation and/or reduce area by eliminating redundant 
computations and result in different tradeoffs.  Here, the 
systolic designs proposed are biased to favor 
implementations that take advantage of the architectural 
richness of new generations of target FPGA hardware and 
applications that require very high performance.  High 
performance is also aided by the regularity of the fine-
grained, locally connected base-4 design.   

Architecture Multipliers Adders Data Memory Throughput Latency Limits on N 
1-D Systolic N  N  2N  N  2 1N −  none 
2-D Systolic N  N  3N  2 1N +  4 1N −  3 4N N N=  
Base-4 FFT / 4N  2 N  1.75 3N N+  / 2 4 28N N+ +  / 2 17 / 4 40N N+ +  256n  

Systolic Pipelined[8] 
2log N  22 log N  2logN N  N  

2(1 log / 2)N N+  2nN =  
Systolic Pipelined[4] 

23log N  23log N  25 log 2 2N N+ +  N  
22 logN N+  2nN =  

Pipelined FFT [9][10] 
4log N  44 log N  1N −  N  

4
2 2 3(log 1)N N− + −  2nN =  

Pipelined FFT[2][3]  
4log 1N −  43log N  2 2N −  N  2.2 N 4nN =  

Pipelined FFT[7] 
2log N  22 log N  2N  / 2N  2 N 2nN =  

Table 3: Parameterized FFT comparisons assuming  3 4N N N= = for the 2-D systolic and base-4 FFTs.  Here n is an integer greater than 
one.  Latency is defined as the number of clock cycles to produce the first DFT in a sequence of DFTs. 
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