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Abstract:  The problem of rapidly generating optimal 
parallel circuit implementations from high level, formal 
descriptions of affinely indexed algorithms is addressed 
here in the context of reconfigurable FPGA-based 
computing. A specialized software tool, SPADE, is 
described that will take a user's high level code 
description of his algorithms and automatically generate 
an abstract latency-optimal, locally-connected parallel 
array of elemental processing elements. A design 
example, the Faddeev algorithm, is used to illustrate the 
tool's capabilities and to show a potential algorithm 
basis for a reconfigurable array processor. 
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1. Introduction 
Meeting latency and throughput requirements is a 

critical concern in many embedded signal and image 
processing applications.  Consequently, a substantial 
literature has appeared over the last two decades 
describing fine-grained parallel algorithms, well suited to 
meeting these requirements when instantiated in regular, 
array-based architectures that involve pipelined 
movement of data.  Such algorithms, typically referred to 
generically as "systolic", have been shown to be suitable 
for a very large range of structured problems (i.e., linear 
algebra, graph theory, computational geometry, number-
theoretic algorithms, string matching,  sorting/searching, 
dynamic programming, discreet mathematics). 

Usage of this systolic architecture class has not been 
widespread in the past, in part because programmable 
hardware that supported this computing paradigm was 
not cost-effective to build.   However, suitable hardware 
has now begun to appear in the form of complex FPGAs, 
which are constructed from tiling identical memory and 
logic blocks along with supporting mesh interconnection 
networks, in a way that matches systolic array 
architectures.  Such hardware could allow dynamic 
implementation of systolic algorithms leading to 
inexpensive "programmable" systolic array hardware.   

The primary reason for the limited role of systolic 
processing is that to date no commercial software tool 
has appeared that allows rapid generation and exploration 
of systolic array designs.  Without such a tool, systolic 

arrays are very difficult to design because parallel 
algorithm/architecture design is an intricately complex 
process requiring extensive knowledge of algorithms, 
architectures, and hardware, past work on finding parallel 
algorithm implementations are largely "point" designs 
that offer little insight into the numerous tradeoffs 
required as part of any embedded system design and 
there are no systematic design methodologies with 
adequate generality and ease of use     

The symbolic parallel algorithm development 
environment (SPADE) described here is being developed 
to allow a designer to easily and rapidly explore the 
design space of systolic array implementations so that 
system tradeoffs can be cost-effectively analyzed.  The 
intention is to allow a user to specify his algorithm using 
traditional high-level code, set some architectural 
constraints and then view the results in a meaningful 
graphical format.  SPADE includes a simulator that has 
an embedded computational model to facilitate the 
transition to systolic FPGA hardware.  The results 
described here show new tool generated optimal systolic 
algorithm mappings for the Faddeev algorithm, which 
was chosen because it is a reasonably complex 
demonstration example, it is useful for performing a wide 
variety of matrix based computations, and useful detailed 
systolic analyses already exist [8],[9].  Other tool-
generated mappings are presented elsewhere [10]. 

2. Related Work     
The most common approach to designing relevant 

architectures have been those based on index 
transformations [7],[11],[2] although data dependency 
based efforts have been pursued as well [5],[8].  The 
former category makes use of mathematical 
transformations which, when applied to systems of 
"uniform" or "regular" recurrence equations or their 
equivalent, result in parallel algorithms that represent 
"mappings" to an architectural model consisting of large 
arrays of simple, locally connected abstract processing 
elements (PEs).  More specifically, these techniques 
calculate matrices that transform the index set describing 
the original algorithm to an index set containing at least 
one time dimension with the remaining indices used for 
spatial coordinates, i.e., a "space-time" mapping.   
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A classic example of such uniform algorithms is the 
multiplication of two matrices A and B to produce the 
result C: 

 
1 , ,
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[ 1, , ] [ , , ]
[ , , 1] [ , , ] [ , , ]* [ , , ]

for i j k N
a i j k a i j k
b i j k b i j k
c i j k c i j k a i j k b i j k

≤ ≤
+ =

+ =
+ = +

 (1) 

where each variable element (e.g., a[i,j,k]) takes on a 
unique value (single assignment property) for each 
affinely referenced index vector I, (I=(i,j,k)T).  All 
algorithm variables are matrices or vectors.  The most 
important characteristic of these algorithms is that all 
dependencies are uniform for all values of the index 
space I.   For example c[I] above depends upon c[I-D], 
where D=[0,0,-1] , for all values of I.  Because 
dependence vectors like D will always contain only small 
integer values, data is inherently "localized" or pipelined 
in the systolic array implementation.  That is, calculations 
associated with indices in space-time only make use of 
variable values obtained from the same or adjacent points 
in that index space.  Significant extensions to this model 
have been made with the goal of either generalizing the 
target class of algorithms [2],[3],[13],[14] or converting 
non-uniform equations to a uniform equivalent form [6]. 

There is not sufficient space to describe the many 
previous tool efforts intended to automate the systolic 
array design process, but useful summaries exist 
[1],[8],[16]. Most past tools have targeted uniform 
recurrence equations and the related problem of serially 
coded loop nests with uniform dependencies.  The 
disadvantage of tool methodologies based on uniform 
dependencies is that most algorithms are not naturally 
expressed in this form and the process of putting them in 
this form can involve substantial effort because there is 
no systematic way of doing so. Also, potential 
parallelism is not fully exploited [1] and inefficiencies 
are introduced by unnecessarily requiring all variables to 
exist at all points in the algorithm index space[12].  

Active systolic tool efforts such as PICO [15] and 
DG2VHDL [16] take as inputs a uniform algorithm 
(PICO) or a user supplied dependence graph 
(DG2VHDL), and focus on the production of efficient 
hardware implementations.  The MMalpha environment 
provides a high level language for expressing affine 
recurrence equations that lets the user create architectures 
and hardware by invoking built in code 
transformations[4].  

3. Spade Description 
3.1 Introduction  

The primary goal of SPADE is to enable a designer to 
easily, automatically and rapidly generate abstract array 
designs that represent the best of system tradeoffs.  For 
example, a system design might require that systolic 
inputs and outputs occur at array boundaries, that all 

intermediate computations remain internal to the array, 
and that any coefficient matrices used also remain 
internal so that no "edge based" memory structures need 
be created. Alternatively, new FPGA based hardware 
technologies provide enormous flexibility in making 
design choices.  In this case a possible design scenario 
might have the system architects request all interesting 
systolic designs. With such feedback it might be possible 
to make early decisions that would more efficiently focus 
their FPGA hardware options. 

Our tool approach generalizes acceptable input 
algorithm forms to one more closely resembling that in 
which an algorithm is naturally expressed.  For example 
in the case of matrix-matrix multiplication, it would be 
much more desirable to accept inputs directly in the 
familiar form 

 
1

[ , ] [ , ]* [ , ]
N

k
c i j a i k b k j

=

=∑   (2) 

rather than  (1).  As can be seen in (2), it is not required 
that there exist a constant vector D that relates the 
dependencies between c and a and b.  Note also that (2) 
is very general and unlike (1) doesn't impose specific 
relationships between variables that inherently restrict 
subsequent choice of architectures.  Systolic design 
solutions for the algorithm form (2) are often termed 
"non-uniform" because local dependencies between 
variables in a systolic array design do not have to be the 
same for all points in the index space I. 

The difficulty in working with equations like (2) is 
that dependencies between variables are no longer local 
and thus the path to a systolic implementation is more 
difficult.  In order to solve the general problem of finding 
optimal mappings of non-uniform affine recurrence 
equations that simultaneously consider scheduling, 
reindexing, localization and allocation in the presence of 
architectural constraints, it is necessary to use integer 
programming methods [1].  Two tool efforts that have 
been proposed for this class of algorithms both solve the 
integer-programming problem by structuring them as 
customized searches [1],[17].  The focus in [17] is to 
maximize processor utilization for problems with a given 
throughput and input-output scheme using as a metric a 
sum of dependence lengths.  Alternatively, DESCARTES 
uses algorithm latency as an objective function metric 
[1].  One important difference between the two tools is 
that the DESCARTES search is structured to find optimal 
designs, whereas [17] is more limited in this respect and 
therefore optimal designs aren't guaranteed.  
DESCARTES places strong reliance on the use of 
architectural constraints to reduce the space of possible 
systolic solutions, making the search strategy feasible.   

SPADE uses a search methodology that is based on 
that used in DESCARTES, but involves a different 
formalism and is organized to provide better coverage of 
the architectural solution space for cases where solutions 
are less architecturally constrained.  In particular SPADE 
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separates the scheduling and reindexing steps so that all 
schedule solutions can be enumerated prior to reindexing, 
allocation and localization.  This is useful when solutions 
exist that are latency optimal, but are inefficient (sub-
optimal) for other reasons.  SPADE also incorporates a 
parser to handle standard nested loop inputs, does 
additional analysis of potential solutions to give the 
designer more control over design tradeoffs, includes a 
simulator that uses an embedded model of computation 
and is instrumented to provide useful architectural 
statistics. 

SPADE performs space-time mapping first.  That is, 
scheduling, reindexing and allocation are done first.  
After all minimum latency solutions are found, an 
attempt is made to localize these solutions.  If this isn't 
possible, then the next best minimum latency space-time 
mapping solutions are chosen and the process repeated 
until at least one solution is found.   (SPADE can also 
examine designs associated with non-optimal latencies.) 

3.2 Space-Time Mapping 
A formal description of non-uniform recurrence 

equations, termed "conditional affine recurrence 
equations," has been provided in [1].  In this context 
"conditional" is intended to imply that each equation can 
have its own unique index space.  A system is 

1 1 1 1

n

[ ( )] (... [ ( )],...) I
...

[ ( )] (... [ ( )],...) I

i i

n n i in
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=
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where f,g represent the functional variable dependencies, 
jI  is the index range for equation j, iw  is one of the 

algorithm variables and the affine indexing functions are 

 
( )
( )

A I AI a
B I BI b

= +
= +

. 

Here, A/a, and B/b are integer matrices/vectors.   All 
assignments of values to variable elements in the system 
of the equations must not involve a reuse of a variable.  
For each algorithm variable SPADE finds an affine 
transformation, T that maps this algorithm variable's 
indices to space-time, e.g., for a variable x: 

 ( ) ( )x x x xT x T A I a t= + +   
where xT  is a matrix and xt  is a vector.  Thus, every 
variable element [ ]Tx I  gets mapped to a unique point in 
the space-time domain.  The transformation T can be 
thought of as consisting of two parts, one that determines 
the scheduling index and one that determines the spatial 
index.  That is, writing ( )T x  using 

 ,x x
x x

x x

T t
S s

γΛ   
= =   
   

 (4) 

means that variable [ ]Tx I  would be mapped to a time 
index ( )x x x xA I a γΛ + +  ( /x xγΛ  is a vector/scalar), and 

to a spatial index ( )x x x xS A I a s+ +  ( /x xS s  is a 
matrix/vector with a number of rows/elements equal to 
the dimension of the spatial array). 

Each time index corresponds to potential activity 
(data transfer or calculation) in all PEs with that same 
index value.  The basic execution cycle for a time index 
value consists of two steps:  first there is a local 
movement of data between adjacent PEs, followed by a 
computation step in those PEs.  The algorithm latency is 
the total number of these time steps needed to execute the 
algorithm computation. 

SPADE's primary outputs are the values T,t for each 
of the algorithm variables.  In addition a set of vectors 
are computed indicating the direction of data flow for 
each dependency in the algorithm.  For the example (2) it 
can be seen that c needs input from a, so corresponding 
to this dependence is a uniform flow of data from T(a) to 
T(c) in the space-time domain. Since this flow is one 
dimensional, a vector cav  is calculated to indicate its 
direction.   

3.3 Solution search 
From (4) it is clear that to specify the space-time 

mapping for x it is necessary to find the elements of 
, ,x x xS sΛ and the scalar xγ .  For example, given 

[ ]1 2x x xλ λΛ = , SPADE considers 1xλ and 2xλ  as 
"search" variables (as distinct from previously mentioned 
"algorithm variables").  Following [1], the allocation 
matrices like xS are treated as a single variable and are 
derived from unimodular matrices to ensure that space-
time mapping solutions are more "dense".  The small 
dimensionality of S limits the number of unique matrices 
that have to be considered. The fact that each algorithm 
variable can have a different spatial mapping S is 
equivalent to it being "reindexed" with respect to other 
algorithm variables. 

Finally, given a set of search variables, SPADE 
examines all possible combinations and chooses those 
that produce the minimum algorithm latency.  The 
difficulty in doing this is that there are potentially a large 
number of these search variables and even though each 
need take only a small range of values, the search can be 
computationally infeasible.  By introducing 
computational and architectural constraints that limit the 
space of choices that has to be searched the solution 
space can be limited [1].  For example, causality requires 
that a computation not occur if its arguments are not 
available.  From the example (2) it can be seen that 
computation of c depends upon input a.   Thus, it must 
follow that temporally  
 ( ) ( ) 0c c c c a a a aA I a B I bγ γΛ + + − Λ + − ≥  (5) 
Typically, there are many dependencies and thus a large 
number of such constraints are generated from these 
criteria. 
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Architectural constraints are just as important.  For 
example, if it is desired that input of data occur from the 
edge of the PE array, then the position in space-time of 
an input matrix, such as a[i,j] in (2) , must be such that 
the unit time vector tu  is in the plane of the space-time 
array of variable a (hence it's projection onto the PE 
array is a line). This constraint requires that the normal 

an  to the plane of a satisfies 0t au n• = , and thus a is 
"time aligned". Also, for the projection of a to be at the 
edge of the PE array it must not be within the convex hull 
of the polygon defining the PE array.  Constraints like 
these considerably limit choices for aΛ and aS  

3.4 Input 
Input to SPADE is in the form of high-level code 

based on an Algol-like language that is a subset of the 
Maple programming language.  Very often it is 
possible to go directly from a scientific expression to 
equivalent code because the Maple language provides 
special syntax options for the commutative and 
associative operators (multiply, add, minimum, 
maximum) this tool supports.  For example, the matrix-
matrix algorithm (2) can be written in this language 
directly as 

for i to N do for j to N do 
   c[i,j]  :=  add(a[i,k]*b[k,j], k=1..N) 
 end do end do;
where the Maple "add" construct directly replaces the 
mathematical summation sign.  Maple treats the loop 
structure in traditional way, but SPADE does not make 
any lexicographic interpretation of the loops; rather it 
uses the loop limits only to determine the index space of 
the inner statement body. Computational ordering is 
determined directly from the loop body statements.  
When conditionals are used in code input to SPADE, the 
loop limits are ignored in determining the index space.  

Other inputs pertain to architectural constraints 
desired and objective function criteria used to select 
solutions from the search space.  Architectural 
constraints specify (1) which variables should be 
constrained to align with the time axis ("time-aligned") 
and/or the PE array boundary as outlined in Section 3.3 
and (2) whether overlap of variables in space-time is 
allowed.  After SPADE finds all minimum latency 
solutions, secondary optimization criteria can be used to 
choose sub-solutions from among these. Presently these 
criteria find sub-solutions with (1) minimum area, (2) 
maximum regularity and (3) minimum array bandwidth. 

4. Faddeev Design Example 
4.1 Algorithm Derivation 

The Faddeev algorithm [9] computes the expression 
CX+D subject to the constraint AX=B, where C,D,A, and 
B are matrices and A is a full rank NxN matrix.  It is 

convenient to describe the algorithm as an extended 
matrix a using the representation 

 a = 
|
|

A B
C D− . (6) 

The algorithm begins by adding a linear combination 
of the rows A|B to the rows C|D or 

 
|
|

A B
WA C WB D− + . 

If W is chosen so that WA-C=0, then W=CA-1 and 
this substitution in the lower right hand corner provides 
the desired result there or 

 1
|

0 |
A B

CA B D− +
. (7) 

It can be seen that matrix operations are 
"programmable" based on the entries in (6), e.g., 

 ,|
| 0

XA B
I

→
−

1,|
| 0

AA I
I

−
→

−
.|

| 0
CBI B

C
→

−
 

It is not necessary to actually compute the value of W; it 
is only necessary to annul the elements of C, a process 
that can be done using an LU decomposition algorithm in 
which a is decomposed into the product of a lower 
triangular matrix (l) and an upper triangular (u) matrix or 

11 12 13 14 11 12 13 14

21 22 23 24 21 22 23 24

31 32 33 34 31 32 33 34

31 32 43 44 41 42 43 44

1 0 0 0
1 0 0 0

- - 0 0
- - 0 0

u u u u a a a a
l u u u a a a a
l l u u a a a a
l l u u a a a a

     
     
     =
     
     
          

 

where the "-" above indicates these elements lij are not 
computed and each matrix is taken as 4x4.  Here the 
matrix u is the desired final result and corresponds to the 
transformation from a to the form in (7).  This has been 
achieved by stopping the factorization process at the 
point where the elements of C have been annulled. 
Consequently, the desired result from the lower right 
hand corner of (7) is 

 33 34 1

43 44

u ud CA B Du u
− = = +  

. 

An explicit mathematical formula for the l's and u's 
above can be obtained by induction.  That is,  

; ; ; ; 1;11 11 12 12 13 31 14 14 11
/ ; /21 21 11 31 31 11

1
, 1, 4, 2 ( ) /

1
1

, 1, 2, 4 (8)
1

2, 2, 4, 4
1
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j
for i j j i j l a l u uij ij ik kj ii

k
i

for j i i i j u a l uij ij ik kj
k

N
for i j i j u a l uikij ij kjk
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From the mathematical expressions in (8) above it is 
possible to go directly to the coded form by replacing the 
summation by "add()": 

for j to 2*N do 
  for i to 2*N do 
  if i=1 and j>=1 and j<=2*N then u[i,j]:=a[i,j] fi; 
  if j>=i and i>1 and j<=2*N and i<=N then  
   u[i,j]:=a[i,j]-add(l[i,k]*u[k,j],k=1..i-1) 
  fi;     
  if j>N and i>N and j<=2*N and i<=2*N then                (9) 
     u[i,j]:=a[i,j]-add(l[i,k]*u[k,j],k=1..N) 
  fi; 
  if j=1 and i>=1 and i<=2*N then l[i,j]:=a[i,j]/u[j,j] fi; 
  if i>=j and j>1 and i<=2*N and j<=N then  
   l[i,j]:=(a[i,j]-add(l[i,k]*u[k,j],k=1..j-1))/u[j,j]  
  fi; 
 od 
od;

Here, the loop limits have been replaced by the problem 
size parameter, N, where it has been assumed that each 
matrix is NxN in size.  Solutions obtained are 
independent of the size parameter N, which is handled 
symbolically during the solution search. 

While the code in (9) is suitable for input to SPADE, 
there are many different ways to code the Faddeev 
algorithm.  Each of the different codings can result in 
substantially different array implementations.  In general 
it is best to assign unique variables to the quantities that 
you want to calculate.  In (9) the result d is not called out 
separately, which limits the number of array 
implementations that SPADE can explore.  The reason 
for this is that for (9) SPADE must find a single polygon 
in space-time that contains all the values of u, only some 
of which contain d.  If instead the input code called out d 
separately, then SPADE would have an easier task 
because it would have more freedom to separately place 
the polygons that represent d and u. Therefore, (9) has 
been modified as follows: 

for j to 2*N do 
 for i to 2*N do 

     if i=1 and j>=1 and j<=N then u[i,j] := a[i,j] fi; 
  if i=1 and j>=1 and j<=N then b[i,j] := a[i,j+N] fi; 
  if j>=i and i>1 and j<=N then 
   u[i,j]:=a[i,j]-add(l[i,k]*u[k,j],k=1..i-1) 
  fi; 
  if j>=1 and i>=1 and j<=N and i<=N then  
   b[i,j]:=a[i,j+N]-add(l[i,k]*b[k,j],k=1..i-1) (10) 

 fi; 
 if j>=1 and i>=1 and j<=N and i<=N then 
  d[i,j] := a[i+N,j+N]-add(l[i+N,k]*b[k,j],k=1..N) 

  fi; 
  if j=1 and i>=1 and i<=2*N then l[i,j]:=a[i,j]/u[j,j] fi; 
  if i>=j and j>1 and i<=2*N and j<=N then  
   l[i,j]:=(a[i,j]-add(l[i,k]*u[k,j],k=1..j-1))/u[j,j]  
  fi;  
 od 
od; 

where we have also made the substitution 

 13 14

23 24

u ub u u
 =   

. 

as well for similar reasons.  The code (10) is read as a 
text file into SPADE at the beginning of processing by 
the parser.  

From the steps above, it can be seen that a suitable 
algorithm input to SPADE can be derived directly from 
the corresponding mathematical expressions. It is 
noteworthy that no steps in this process involved issues 
requiring significant understanding of parallel algorithms 
or architectures.  

4.2 Faddeev Algorithm Design Results 
The purpose of this section is to provide a few 

examples of how high level architectural constraints can 
result in very different array designs that could serve as 
reconfigurable computer options. 
4.2.1 Minimum Area Array Designs   

In this first mapping example the architectural 
constraints were set to find array designs with the least 
PE array area among the minimum time latency 
solutions. In addition, since computation of values of l  in 
(10) require hardware-demanding division operations, it 
would be desirable to minimize them.  One way of doing 
this is to require that the variable l be mapped such that it 
is projected (time aligned) onto the PE-array in a line.  In 
this case division operations would only be necessary in a 
linear array of PEs as opposed to a 2-D array of PEs.  
Finally, it is a common characteristic of systolic arrays, 
which are physically tied to sensors, to have sensor data 
stream into the array from one or more array-edge 
boundaries.  This is also consistent with FPGA based 
virtual computers that contain a lot of buffer memory at 
the board inputs. This input data configuration can be 
forced by setting a constraint that eliminates exploration 
of designs that don't map (time align) a to a linear array 
of PEs on the edge of the complete array. 

With these constraints set, a SPADE search 
discovered 2 unique solutions with time latency 5N-2, 
each with ½ N(3N+1) PEs, one of which is shown in Fig. 
1.  The PE array in Fig. 1 is uniform in terms of the 
interconnection pattern and there are twelve different 
flows of data associated with the various variable 
dependencies, each of which moves along an orthogonal 
path defined by the arrows in Fig. 1.  There are five 
additional dependencies in which a variable does not 
move spatially, but rather is updated and reused in the 
same PE. This corresponds to data "movement" along the 
time axis in space-time.   

The picture in Fig. 1 shows a superposition of data 
flow at all times.  The actual time variation of data flow 
is more complex, with the size of uniform sub-regions of 
data movement growing and shrinking with time.  The 
design in Fig. 1 is the same architecture on which most 
past analyses of the Faddeev algorithm have been based 
[8],[9]. 
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Figure 1.  One of two minimum area designs for Faddeev 
algorithm with variables a and l constrained to appear on the array 

boundary (N=6). 
4.2.2 Maximum Regularity Design 

While a minimum PE array area criterion is useful as 
a secondary objective function, it is possible to devise a 
variety of other criteria to help select designs. The main 
function of different secondary objective criteria should 
be to identify very different architectures, rather than to 
identify a single "best" one.  This is important because 
the SPADE is capable of generating many different 
architectures, but at the abstract level at which these are 
generated, practical FPGA hardware considerations can 
have a big impact on choices.  In this section a 
heuristically determined maximum regularity criteria is 
described.  The goal of this criterion is to select designs 
that are maximally spatially uniform, and thus easiest to 
build. Because specification of what constitutes a regular 
array design is subjective, SPADE uses three different 
criteria. 

Interconnection network topology: The topology 
desired is one that minimizes the number of different 
interconnects and prefers orthogonal data movement. An 
array design is penalized in proportion to the number of 
different data flows and doubly penalized for each 
different diagonal flow of data.  

Number and orientation of variables that are time-
aligned: This criterion penalizes an array design for each 
variable that is time aligned, because this imposes a non-
uniformity in the overall design.  That is, a problem size 
amount of memory, O(N) per PE, is required for each PE 
and special data buffering is required.  A design with a 
time-aligned variable that is not orthogonal to the x/y 
axes is further penalized. 

Dependency relations between variables:  Because a 
systolic design is inherently pipelined, it is possible to 
find many different alignments between variables.  In 
other words a variable plane can simply be shifted one 
unit or rotated in space-time and still represent a valid 
design.  Therefore, the regularity criteria penalize designs 
of this type. 

Using the criteria above as the secondary objective 
function, SPADE produces the single optimal design 
(5N-2 latency) shown in Fig. 2.  Clearly this is a much 
larger design, but it is completely uniform with respect to 

PEs and interconnections, it contains no variables that are 
time aligned, and the overall number of different data-
flow paths is less by 25% than the design in Fig. 1.  On 
the other hand it requires an array of dividers (in the area 
labeled l), and the load/unload cycle required by the 
input/output data could be undesirable.  

Figure 2.   Faddeev algorithm single optimal design obtained using 
regularity as secondary objective function (N=6). 

4.2.3 Single Divider Implementation 
It is known that the Faddeev algorithm can be mapped 

to a design that uses only one divider [9], so a useful 
question would be what code modifications would be 
necessary to achieve this.  The code (10) shows only 
divisions by u[j,j]; consequently, a 1-D variable can 
replace a 2-D variable limiting the number of divisions to 
N with "u_inv[j]:=1/u[j,j]".  Adding this to (10) and 
changing the divisions by u[j,j] to multiplications by 
u_inv[j] results in the code (11), where "...." refers to the 
other statements in (10) that don't involve division, yields 

for j to 2*N do 
  for i to 2*N do 
     ..... 
  if j<=N and j>=1 then u_inv[j]:=1/u[j,j] fi; 
     if j=1 and i>=1 and i<=2*N then l[i,j]:=a[i,j]*u_inv[j] fi; 
     if i>=j and j>1 and i<=2*N and j<=N then  
   l[i,j]:=(a[i,j]-add(l[i,k]*u[k,j],k=1..j-1))*u_inv[j]  
     fi;  
 od 
od; 
The only way all divisions can occur in the same PE 

happens when u_inv[j] (a line in space-time) aligns with 
the time axis.  Thus, an architectural constraint is set that 
only looks for these solutions. With this constraint set, 
SPADE finds one area-optimal design, that shown in Fig. 
3, which has the same 5N-2 time latency as that in Fig. 1, 
but (2N-1)2 area.  (Note that in Fig. 3 the single PE with 
the divider is in the upper right hand corner of the figure 
and isn't labeled.) 
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Figure 3. Single optimal design with one divider (N=6). 
5. Space-time graphical output 

Unfortunately, the mathematical outputs T,t provide 
little insight into the nature of the solution, especially 
from the designer's point of view.  For this purpose 
graphical outputs have been included as part of SPADE.  
The two primary mapping views when the dimension of 
space-time is three are the 2-D spatial-only views seen in 
Figs.1-3 and a 3-D view that shows the mapped 
algorithm variables in space-time along with a projection 
of all these variables onto just the spatial plane. Such a 
space-time view example is shown from two different 
perspectives in Fig. 4 order to help in its interpretation 
(in the SPADE environment this view can be easily 
manipulated along all axes in real-time).  The result in 
Fig. 4 corresponds to the spatial-only view in Fig. 2.  Fig. 
4 is more complex because it shows additional variables, 
IM1 through IM4 (e.g., IM1[i,j,k]=l[i,k]*u[k,j]). These  
new variables are created automatically [1] in the parser 
and are there to keep running sums associated with the 
summations in (10).  

Figure 4. Space-time mappings corresponding to design in Fig. 2 
The space-time view imparts a good deal more 

information than the spatial-only view.  For example it 
shows where and when array activity associated with the 
different algorithm variables takes place, it provides a 
visible view of 3-D data flow between algorithm 
variables, and it imparts a rough estimate of how 
efficiently PEs are used by what percent of the total 

space-time volume is occupied by polytopes and 
polygons. 
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