
Proceedings Engineering of Reconfigurable Systems and Algorithms (ERSA '02)
International Multiconference in Computer Science

Las Vegas, Nevada, June 24, 2002.

Automatic Generation of Systolic Array Designs For
Reconfigurable Computing

J. Greg Nash
Centar

Los Angeles, CA, U.S.A.

Abstract: The problem of rapidly generating optimal
parallel circuit implementations from high level, formal
descriptions of affinely indexed algorithms is addressed
here in the context of reconfigurable FPGA-based
computing. A specialized software tool, SPADE, is
described that will take a user's high level code
description of his algorithms and automatically generate
an abstract latency-optimal, locally-connected parallel
array of elemental processing elements. A design
example, the Faddeev algorithm, is used to illustrate the
tool's capabilities and to show a potential algorithm
basis for a reconfigurable array processor.

Keywords: systolic, CAD, reconfigurable, FPGA,
parallel, algorithm

1. Introduction
Meeting latency and throughput requirements is a

critical concern in many embedded signal and image
processing applications. Consequently, a substantial
literature has appeared over the last two decades
describing fine-grained parallel algorithms, well suited to
meeting these requirements when instantiated in regular,
array-based architectures that involve pipelined
movement of data. Such algorithms, typically referred to
generically as "systolic", have been shown to be suitable
for a very large range of structured problems (i.e., linear
algebra, graph theory, computational geometry, number-
theoretic algorithms, string matching, sorting/searching,
dynamic programming, discreet mathematics).

Usage of this systolic architecture class has not been
widespread in the past, in part because programmable
hardware that supported this computing paradigm was
not cost-effective to build. However, suitable hardware
has now begun to appear in the form of complex FPGAs,
which are constructed from tiling identical memory and
logic blocks along with supporting mesh interconnection
networks, in a way that matches systolic array
architectures. Such hardware could allow dynamic
implementation of systolic algorithms leading to
inexpensive "programmable" systolic array hardware.

The primary reason for the limited role of systolic
processing is that to date no commercial software tool
has appeared that allows rapid generation and exploration
of systolic array designs. Without such a tool, systolic

arrays are very difficult to design because parallel
algorithm/architecture design is an intricately complex
process requiring extensive knowledge of algorithms,
architectures, and hardware, past work on finding parallel
algorithm implementations are largely "point" designs
that offer little insight into the numerous tradeoffs
required as part of any embedded system design and
there are no systematic design methodologies with
adequate generality and ease of use

The symbolic parallel algorithm development
environment (SPADE) described here is being developed
to allow a designer to easily and rapidly explore the
design space of systolic array implementations so that
system tradeoffs can be cost-effectively analyzed. The
intention is to allow a user to specify his algorithm using
traditional high-level code, set some architectural
constraints and then view the results in a meaningful
graphical format. SPADE includes a simulator that has
an embedded computational model to facilitate the
transition to systolic FPGA hardware. The results
described here show new tool generated optimal systolic
algorithm mappings for the Faddeev algorithm, which
was chosen because it is a reasonably complex
demonstration example, it is useful for performing a wide
variety of matrix based computations, and useful detailed
systolic analyses already exist [8],[9]. Other tool-
generated mappings are presented elsewhere [10].

2. Related Work
The most common approach to designing relevant

architectures have been those based on index
transformations [7],[11],[2] although data dependency
based efforts have been pursued as well [5],[8]. The
former category makes use of mathematical
transformations which, when applied to systems of
"uniform" or "regular" recurrence equations or their
equivalent, result in parallel algorithms that represent
"mappings" to an architectural model consisting of large
arrays of simple, locally connected abstract processing
elements (PEs). More specifically, these techniques
calculate matrices that transform the index set describing
the original algorithm to an index set containing at least
one time dimension with the remaining indices used for
spatial coordinates, i.e., a "space-time" mapping.

Greg
Sticky Note
J. G. Nash. Automatic generation of systeolic array designs for reconfigurable computing. In T. P. Plaks
and P. M. Athanas, editors, Engineering of Reconfigurable Systems and Algorithms, ERSA’02. Proc. of the
International Conference, Las Vegas, Nevada, USA, June 24–27, 2002, pages 176–182. CSREA Press, 2002.

Proceedings Engineering of Reconfigurable Systems and Algorithms (ERSA '02)
International Multiconference in Computer Science

Las Vegas, Nevada, June 24, 2002.

A classic example of such uniform algorithms is the
multiplication of two matrices A and B to produce the
result C:

1 , ,

[, 1,] [, ,]
[1, ,] [, ,]
[, , 1] [, ,] [, ,]* [, ,]

for i j k N
a i j k a i j k
b i j k b i j k
c i j k c i j k a i j k b i j k

≤ ≤
+ =

+ =
+ = +

 (1)

where each variable element (e.g., a[i,j,k]) takes on a
unique value (single assignment property) for each
affinely referenced index vector I, (I=(i,j,k)T). All
algorithm variables are matrices or vectors. The most
important characteristic of these algorithms is that all
dependencies are uniform for all values of the index
space I. For example c[I] above depends upon c[I-D],
where D=[0,0,-1] , for all values of I. Because
dependence vectors like D will always contain only small
integer values, data is inherently "localized" or pipelined
in the systolic array implementation. That is, calculations
associated with indices in space-time only make use of
variable values obtained from the same or adjacent points
in that index space. Significant extensions to this model
have been made with the goal of either generalizing the
target class of algorithms [2],[3],[13],[14] or converting
non-uniform equations to a uniform equivalent form [6].

There is not sufficient space to describe the many
previous tool efforts intended to automate the systolic
array design process, but useful summaries exist
[1],[8],[16]. Most past tools have targeted uniform
recurrence equations and the related problem of serially
coded loop nests with uniform dependencies. The
disadvantage of tool methodologies based on uniform
dependencies is that most algorithms are not naturally
expressed in this form and the process of putting them in
this form can involve substantial effort because there is
no systematic way of doing so. Also, potential
parallelism is not fully exploited [1] and inefficiencies
are introduced by unnecessarily requiring all variables to
exist at all points in the algorithm index space[12].

Active systolic tool efforts such as PICO [15] and
DG2VHDL [16] take as inputs a uniform algorithm
(PICO) or a user supplied dependence graph
(DG2VHDL), and focus on the production of efficient
hardware implementations. The MMalpha environment
provides a high level language for expressing affine
recurrence equations that lets the user create architectures
and hardware by invoking built in code
transformations[4].

3. Spade Description
3.1 Introduction

The primary goal of SPADE is to enable a designer to
easily, automatically and rapidly generate abstract array
designs that represent the best of system tradeoffs. For
example, a system design might require that systolic
inputs and outputs occur at array boundaries, that all

intermediate computations remain internal to the array,
and that any coefficient matrices used also remain
internal so that no "edge based" memory structures need
be created. Alternatively, new FPGA based hardware
technologies provide enormous flexibility in making
design choices. In this case a possible design scenario
might have the system architects request all interesting
systolic designs. With such feedback it might be possible
to make early decisions that would more efficiently focus
their FPGA hardware options.

Our tool approach generalizes acceptable input
algorithm forms to one more closely resembling that in
which an algorithm is naturally expressed. For example
in the case of matrix-matrix multiplication, it would be
much more desirable to accept inputs directly in the
familiar form

1

[,] [,]* [,]
N

k
c i j a i k b k j

=

=∑ (2)

rather than (1). As can be seen in (2), it is not required
that there exist a constant vector D that relates the
dependencies between c and a and b. Note also that (2)
is very general and unlike (1) doesn't impose specific
relationships between variables that inherently restrict
subsequent choice of architectures. Systolic design
solutions for the algorithm form (2) are often termed
"non-uniform" because local dependencies between
variables in a systolic array design do not have to be the
same for all points in the index space I.

The difficulty in working with equations like (2) is
that dependencies between variables are no longer local
and thus the path to a systolic implementation is more
difficult. In order to solve the general problem of finding
optimal mappings of non-uniform affine recurrence
equations that simultaneously consider scheduling,
reindexing, localization and allocation in the presence of
architectural constraints, it is necessary to use integer
programming methods [1]. Two tool efforts that have
been proposed for this class of algorithms both solve the
integer-programming problem by structuring them as
customized searches [1],[17]. The focus in [17] is to
maximize processor utilization for problems with a given
throughput and input-output scheme using as a metric a
sum of dependence lengths. Alternatively, DESCARTES
uses algorithm latency as an objective function metric
[1]. One important difference between the two tools is
that the DESCARTES search is structured to find optimal
designs, whereas [17] is more limited in this respect and
therefore optimal designs aren't guaranteed.
DESCARTES places strong reliance on the use of
architectural constraints to reduce the space of possible
systolic solutions, making the search strategy feasible.

SPADE uses a search methodology that is based on
that used in DESCARTES, but involves a different
formalism and is organized to provide better coverage of
the architectural solution space for cases where solutions
are less architecturally constrained. In particular SPADE

Proceedings Engineering of Reconfigurable Systems and Algorithms (ERSA '02)
International Multiconference in Computer Science

Las Vegas, Nevada, June 24, 2002.

separates the scheduling and reindexing steps so that all
schedule solutions can be enumerated prior to reindexing,
allocation and localization. This is useful when solutions
exist that are latency optimal, but are inefficient (sub-
optimal) for other reasons. SPADE also incorporates a
parser to handle standard nested loop inputs, does
additional analysis of potential solutions to give the
designer more control over design tradeoffs, includes a
simulator that uses an embedded model of computation
and is instrumented to provide useful architectural
statistics.

SPADE performs space-time mapping first. That is,
scheduling, reindexing and allocation are done first.
After all minimum latency solutions are found, an
attempt is made to localize these solutions. If this isn't
possible, then the next best minimum latency space-time
mapping solutions are chosen and the process repeated
until at least one solution is found. (SPADE can also
examine designs associated with non-optimal latencies.)

3.2 Space-Time Mapping
A formal description of non-uniform recurrence

equations, termed "conditional affine recurrence
equations," has been provided in [1]. In this context
"conditional" is intended to imply that each equation can
have its own unique index space. A system is

1 1 1 1

n

[()] (... [()],...) I
...

[()] (... [()],...) I

i i

n n i in

w A I g w B I for all I in

w A I f w B I for all I in

=

=
(3)

where f,g represent the functional variable dependencies,
jI is the index range for equation j, iw is one of the

algorithm variables and the affine indexing functions are

()
()

A I AI a
B I BI b

= +
= +

.

Here, A/a, and B/b are integer matrices/vectors. All
assignments of values to variable elements in the system
of the equations must not involve a reuse of a variable.
For each algorithm variable SPADE finds an affine
transformation, T that maps this algorithm variable's
indices to space-time, e.g., for a variable x:

 () ()x x x xT x T A I a t= + +
where xT is a matrix and xt is a vector. Thus, every
variable element []Tx I gets mapped to a unique point in
the space-time domain. The transformation T can be
thought of as consisting of two parts, one that determines
the scheduling index and one that determines the spatial
index. That is, writing ()T x using

 ,x x
x x

x x

T t
S s

γΛ   
= =   
   

 (4)

means that variable []Tx I would be mapped to a time
index ()x x x xA I a γΛ + + (/x xγΛ is a vector/scalar), and

to a spatial index ()x x x xS A I a s+ + (/x xS s is a
matrix/vector with a number of rows/elements equal to
the dimension of the spatial array).

Each time index corresponds to potential activity
(data transfer or calculation) in all PEs with that same
index value. The basic execution cycle for a time index
value consists of two steps: first there is a local
movement of data between adjacent PEs, followed by a
computation step in those PEs. The algorithm latency is
the total number of these time steps needed to execute the
algorithm computation.

SPADE's primary outputs are the values T,t for each
of the algorithm variables. In addition a set of vectors
are computed indicating the direction of data flow for
each dependency in the algorithm. For the example (2) it
can be seen that c needs input from a, so corresponding
to this dependence is a uniform flow of data from T(a) to
T(c) in the space-time domain. Since this flow is one
dimensional, a vector cav is calculated to indicate its
direction.

3.3 Solution search
From (4) it is clear that to specify the space-time

mapping for x it is necessary to find the elements of
, ,x x xS sΛ and the scalar xγ . For example, given

[]1 2x x xλ λΛ = , SPADE considers 1xλ and 2xλ as
"search" variables (as distinct from previously mentioned
"algorithm variables"). Following [1], the allocation
matrices like xS are treated as a single variable and are
derived from unimodular matrices to ensure that space-
time mapping solutions are more "dense". The small
dimensionality of S limits the number of unique matrices
that have to be considered. The fact that each algorithm
variable can have a different spatial mapping S is
equivalent to it being "reindexed" with respect to other
algorithm variables.

Finally, given a set of search variables, SPADE
examines all possible combinations and chooses those
that produce the minimum algorithm latency. The
difficulty in doing this is that there are potentially a large
number of these search variables and even though each
need take only a small range of values, the search can be
computationally infeasible. By introducing
computational and architectural constraints that limit the
space of choices that has to be searched the solution
space can be limited [1]. For example, causality requires
that a computation not occur if its arguments are not
available. From the example (2) it can be seen that
computation of c depends upon input a. Thus, it must
follow that temporally
 () () 0c c c c a a a aA I a B I bγ γΛ + + − Λ + − ≥ (5)
Typically, there are many dependencies and thus a large
number of such constraints are generated from these
criteria.

Proceedings Engineering of Reconfigurable Systems and Algorithms (ERSA '02)
International Multiconference in Computer Science

Las Vegas, Nevada, June 24, 2002.

Architectural constraints are just as important. For
example, if it is desired that input of data occur from the
edge of the PE array, then the position in space-time of
an input matrix, such as a[i,j] in (2) , must be such that
the unit time vector tu is in the plane of the space-time
array of variable a (hence it's projection onto the PE
array is a line). This constraint requires that the normal

an to the plane of a satisfies 0t au n• = , and thus a is
"time aligned". Also, for the projection of a to be at the
edge of the PE array it must not be within the convex hull
of the polygon defining the PE array. Constraints like
these considerably limit choices for aΛ and aS

3.4 Input
Input to SPADE is in the form of high-level code

based on an Algol-like language that is a subset of the
Maple programming language. Very often it is
possible to go directly from a scientific expression to
equivalent code because the Maple language provides
special syntax options for the commutative and
associative operators (multiply, add, minimum,
maximum) this tool supports. For example, the matrix-
matrix algorithm (2) can be written in this language
directly as

for i to N do for j to N do
 c[i,j] := add(a[i,k]*b[k,j], k=1..N)
 end do end do;
where the Maple "add" construct directly replaces the
mathematical summation sign. Maple treats the loop
structure in traditional way, but SPADE does not make
any lexicographic interpretation of the loops; rather it
uses the loop limits only to determine the index space of
the inner statement body. Computational ordering is
determined directly from the loop body statements.
When conditionals are used in code input to SPADE, the
loop limits are ignored in determining the index space.

Other inputs pertain to architectural constraints
desired and objective function criteria used to select
solutions from the search space. Architectural
constraints specify (1) which variables should be
constrained to align with the time axis ("time-aligned")
and/or the PE array boundary as outlined in Section 3.3
and (2) whether overlap of variables in space-time is
allowed. After SPADE finds all minimum latency
solutions, secondary optimization criteria can be used to
choose sub-solutions from among these. Presently these
criteria find sub-solutions with (1) minimum area, (2)
maximum regularity and (3) minimum array bandwidth.

4. Faddeev Design Example
4.1 Algorithm Derivation

The Faddeev algorithm [9] computes the expression
CX+D subject to the constraint AX=B, where C,D,A, and
B are matrices and A is a full rank NxN matrix. It is

convenient to describe the algorithm as an extended
matrix a using the representation

 a =
|
|

A B
C D− . (6)

The algorithm begins by adding a linear combination
of the rows A|B to the rows C|D or

|
|

A B
WA C WB D− + .

If W is chosen so that WA-C=0, then W=CA-1 and
this substitution in the lower right hand corner provides
the desired result there or

 1
|

0 |
A B

CA B D− +
. (7)

It can be seen that matrix operations are
"programmable" based on the entries in (6), e.g.,

 ,|
| 0

XA B
I

→
−

1,|
| 0

AA I
I

−
→

−
.|

| 0
CBI B

C
→

−

It is not necessary to actually compute the value of W; it
is only necessary to annul the elements of C, a process
that can be done using an LU decomposition algorithm in
which a is decomposed into the product of a lower
triangular matrix (l) and an upper triangular (u) matrix or

11 12 13 14 11 12 13 14

21 22 23 24 21 22 23 24

31 32 33 34 31 32 33 34

31 32 43 44 41 42 43 44

1 0 0 0
1 0 0 0

- - 0 0
- - 0 0

u u u u a a a a
l u u u a a a a
l l u u a a a a
l l u u a a a a

     
     
     =
     
     
          

where the "-" above indicates these elements lij are not
computed and each matrix is taken as 4x4. Here the
matrix u is the desired final result and corresponds to the
transformation from a to the form in (7). This has been
achieved by stopping the factorization process at the
point where the elements of C have been annulled.
Consequently, the desired result from the lower right
hand corner of (7) is

 33 34 1

43 44

u ud CA B Du u
− = = +  

.

An explicit mathematical formula for the l's and u's
above can be obtained by induction. That is,

; ; ; ; 1;11 11 12 12 13 31 14 14 11
/ ; /21 21 11 31 31 11

1
, 1, 4, 2 () /

1
1

, 1, 2, 4 (8)
1

2, 2, 4, 4
1

u a u a u a u a l

l a u l a u

j
for i j j i j l a l u uij ij ik kj ii

k
i

for j i i i j u a l uij ij ik kj
k

N
for i j i j u a l uikij ij kjk

= = = = =

= =

−
≥ > ≤ ≤ → = − ∑

=
−

≥ > ≤ ≤ → = − ∑
=

> > ≤ ≤ → = − ∑
=

Proceedings Engineering of Reconfigurable Systems and Algorithms (ERSA '02)
International Multiconference in Computer Science

Las Vegas, Nevada, June 24, 2002.

From the mathematical expressions in (8) above it is
possible to go directly to the coded form by replacing the
summation by "add()":

for j to 2*N do
 for i to 2*N do
 if i=1 and j>=1 and j<=2*N then u[i,j]:=a[i,j] fi;
 if j>=i and i>1 and j<=2*N and i<=N then
 u[i,j]:=a[i,j]-add(l[i,k]*u[k,j],k=1..i-1)
 fi;
 if j>N and i>N and j<=2*N and i<=2*N then (9)
 u[i,j]:=a[i,j]-add(l[i,k]*u[k,j],k=1..N)
 fi;
 if j=1 and i>=1 and i<=2*N then l[i,j]:=a[i,j]/u[j,j] fi;
 if i>=j and j>1 and i<=2*N and j<=N then
 l[i,j]:=(a[i,j]-add(l[i,k]*u[k,j],k=1..j-1))/u[j,j]
 fi;
 od
od;

Here, the loop limits have been replaced by the problem
size parameter, N, where it has been assumed that each
matrix is NxN in size. Solutions obtained are
independent of the size parameter N, which is handled
symbolically during the solution search.

While the code in (9) is suitable for input to SPADE,
there are many different ways to code the Faddeev
algorithm. Each of the different codings can result in
substantially different array implementations. In general
it is best to assign unique variables to the quantities that
you want to calculate. In (9) the result d is not called out
separately, which limits the number of array
implementations that SPADE can explore. The reason
for this is that for (9) SPADE must find a single polygon
in space-time that contains all the values of u, only some
of which contain d. If instead the input code called out d
separately, then SPADE would have an easier task
because it would have more freedom to separately place
the polygons that represent d and u. Therefore, (9) has
been modified as follows:

for j to 2*N do
 for i to 2*N do

 if i=1 and j>=1 and j<=N then u[i,j] := a[i,j] fi;
 if i=1 and j>=1 and j<=N then b[i,j] := a[i,j+N] fi;
 if j>=i and i>1 and j<=N then
 u[i,j]:=a[i,j]-add(l[i,k]*u[k,j],k=1..i-1)
 fi;
 if j>=1 and i>=1 and j<=N and i<=N then
 b[i,j]:=a[i,j+N]-add(l[i,k]*b[k,j],k=1..i-1) (10)

 fi;
 if j>=1 and i>=1 and j<=N and i<=N then
 d[i,j] := a[i+N,j+N]-add(l[i+N,k]*b[k,j],k=1..N)

 fi;
 if j=1 and i>=1 and i<=2*N then l[i,j]:=a[i,j]/u[j,j] fi;
 if i>=j and j>1 and i<=2*N and j<=N then
 l[i,j]:=(a[i,j]-add(l[i,k]*u[k,j],k=1..j-1))/u[j,j]
 fi;
 od
od;

where we have also made the substitution

 13 14

23 24

u ub u u
 =   

.

as well for similar reasons. The code (10) is read as a
text file into SPADE at the beginning of processing by
the parser.

From the steps above, it can be seen that a suitable
algorithm input to SPADE can be derived directly from
the corresponding mathematical expressions. It is
noteworthy that no steps in this process involved issues
requiring significant understanding of parallel algorithms
or architectures.

4.2 Faddeev Algorithm Design Results
The purpose of this section is to provide a few

examples of how high level architectural constraints can
result in very different array designs that could serve as
reconfigurable computer options.
4.2.1 Minimum Area Array Designs

In this first mapping example the architectural
constraints were set to find array designs with the least
PE array area among the minimum time latency
solutions. In addition, since computation of values of l in
(10) require hardware-demanding division operations, it
would be desirable to minimize them. One way of doing
this is to require that the variable l be mapped such that it
is projected (time aligned) onto the PE-array in a line. In
this case division operations would only be necessary in a
linear array of PEs as opposed to a 2-D array of PEs.
Finally, it is a common characteristic of systolic arrays,
which are physically tied to sensors, to have sensor data
stream into the array from one or more array-edge
boundaries. This is also consistent with FPGA based
virtual computers that contain a lot of buffer memory at
the board inputs. This input data configuration can be
forced by setting a constraint that eliminates exploration
of designs that don't map (time align) a to a linear array
of PEs on the edge of the complete array.

With these constraints set, a SPADE search
discovered 2 unique solutions with time latency 5N-2,
each with ½ N(3N+1) PEs, one of which is shown in Fig.
1. The PE array in Fig. 1 is uniform in terms of the
interconnection pattern and there are twelve different
flows of data associated with the various variable
dependencies, each of which moves along an orthogonal
path defined by the arrows in Fig. 1. There are five
additional dependencies in which a variable does not
move spatially, but rather is updated and reused in the
same PE. This corresponds to data "movement" along the
time axis in space-time.

The picture in Fig. 1 shows a superposition of data
flow at all times. The actual time variation of data flow
is more complex, with the size of uniform sub-regions of
data movement growing and shrinking with time. The
design in Fig. 1 is the same architecture on which most
past analyses of the Faddeev algorithm have been based
[8],[9].

Proceedings Engineering of Reconfigurable Systems and Algorithms (ERSA '02)
International Multiconference in Computer Science

Las Vegas, Nevada, June 24, 2002.

Figure 1. One of two minimum area designs for Faddeev
algorithm with variables a and l constrained to appear on the array

boundary (N=6).
4.2.2 Maximum Regularity Design

While a minimum PE array area criterion is useful as
a secondary objective function, it is possible to devise a
variety of other criteria to help select designs. The main
function of different secondary objective criteria should
be to identify very different architectures, rather than to
identify a single "best" one. This is important because
the SPADE is capable of generating many different
architectures, but at the abstract level at which these are
generated, practical FPGA hardware considerations can
have a big impact on choices. In this section a
heuristically determined maximum regularity criteria is
described. The goal of this criterion is to select designs
that are maximally spatially uniform, and thus easiest to
build. Because specification of what constitutes a regular
array design is subjective, SPADE uses three different
criteria.

Interconnection network topology: The topology
desired is one that minimizes the number of different
interconnects and prefers orthogonal data movement. An
array design is penalized in proportion to the number of
different data flows and doubly penalized for each
different diagonal flow of data.

Number and orientation of variables that are time-
aligned: This criterion penalizes an array design for each
variable that is time aligned, because this imposes a non-
uniformity in the overall design. That is, a problem size
amount of memory, O(N) per PE, is required for each PE
and special data buffering is required. A design with a
time-aligned variable that is not orthogonal to the x/y
axes is further penalized.

Dependency relations between variables: Because a
systolic design is inherently pipelined, it is possible to
find many different alignments between variables. In
other words a variable plane can simply be shifted one
unit or rotated in space-time and still represent a valid
design. Therefore, the regularity criteria penalize designs
of this type.

Using the criteria above as the secondary objective
function, SPADE produces the single optimal design
(5N-2 latency) shown in Fig. 2. Clearly this is a much
larger design, but it is completely uniform with respect to

PEs and interconnections, it contains no variables that are
time aligned, and the overall number of different data-
flow paths is less by 25% than the design in Fig. 1. On
the other hand it requires an array of dividers (in the area
labeled l), and the load/unload cycle required by the
input/output data could be undesirable.

Figure 2. Faddeev algorithm single optimal design obtained using
regularity as secondary objective function (N=6).

4.2.3 Single Divider Implementation
It is known that the Faddeev algorithm can be mapped

to a design that uses only one divider [9], so a useful
question would be what code modifications would be
necessary to achieve this. The code (10) shows only
divisions by u[j,j]; consequently, a 1-D variable can
replace a 2-D variable limiting the number of divisions to
N with "u_inv[j]:=1/u[j,j]". Adding this to (10) and
changing the divisions by u[j,j] to multiplications by
u_inv[j] results in the code (11), where "...." refers to the
other statements in (10) that don't involve division, yields

for j to 2*N do
 for i to 2*N do

 if j<=N and j>=1 then u_inv[j]:=1/u[j,j] fi;
 if j=1 and i>=1 and i<=2*N then l[i,j]:=a[i,j]*u_inv[j] fi;
 if i>=j and j>1 and i<=2*N and j<=N then
 l[i,j]:=(a[i,j]-add(l[i,k]*u[k,j],k=1..j-1))*u_inv[j]
 fi;
 od
od;
The only way all divisions can occur in the same PE

happens when u_inv[j] (a line in space-time) aligns with
the time axis. Thus, an architectural constraint is set that
only looks for these solutions. With this constraint set,
SPADE finds one area-optimal design, that shown in Fig.
3, which has the same 5N-2 time latency as that in Fig. 1,
but (2N-1)2 area. (Note that in Fig. 3 the single PE with
the divider is in the upper right hand corner of the figure
and isn't labeled.)

Proceedings Engineering of Reconfigurable Systems and Algorithms (ERSA '02)
International Multiconference in Computer Science

Las Vegas, Nevada, June 24, 2002.

Figure 3. Single optimal design with one divider (N=6).
5. Space-time graphical output

Unfortunately, the mathematical outputs T,t provide
little insight into the nature of the solution, especially
from the designer's point of view. For this purpose
graphical outputs have been included as part of SPADE.
The two primary mapping views when the dimension of
space-time is three are the 2-D spatial-only views seen in
Figs.1-3 and a 3-D view that shows the mapped
algorithm variables in space-time along with a projection
of all these variables onto just the spatial plane. Such a
space-time view example is shown from two different
perspectives in Fig. 4 order to help in its interpretation
(in the SPADE environment this view can be easily
manipulated along all axes in real-time). The result in
Fig. 4 corresponds to the spatial-only view in Fig. 2. Fig.
4 is more complex because it shows additional variables,
IM1 through IM4 (e.g., IM1[i,j,k]=l[i,k]*u[k,j]). These
new variables are created automatically [1] in the parser
and are there to keep running sums associated with the
summations in (10).

Figure 4. Space-time mappings corresponding to design in Fig. 2
The space-time view imparts a good deal more

information than the spatial-only view. For example it
shows where and when array activity associated with the
different algorithm variables takes place, it provides a
visible view of 3-D data flow between algorithm
variables, and it imparts a rough estimate of how
efficiently PEs are used by what percent of the total

space-time volume is occupied by polytopes and
polygons.

6. Acknowledgements
This work was supported in part by DARPA Contracts
DAAH01-96-C-R135 and DAAH01-97-C-R107.

7. References
[1] Baltus, Donald and Allen, Jonathon, "Efficient

Exploration of Nonuniform Space-Time Transformations
for Optimal systolic Array Synthesis," Proc. Application
specific Array Processors, 1993, pp.428-441.

[2] Darte, A., Robert, Y., Vivien, F., "Scheduling and
Automatic Parallelization", Birkhauser, 2000.

[3] Feautrier P., "Some Efficient Solutions to the Affine
Scheduling Problem, Part III",Int.J. of Parallel
Programming,Vol. 21(6):389-420, Dec. 1992.

[4] Guillou, A., Quinton, P, Risset, T., Massicotte, D.,
"Automatic Design of VLSI Pipelined LMS
Architectures", Proc. Int. Conf. Parallel Computing in
Electrical Engineering (PARELEC'00).

[5] Kung,S.Y., "VLSI Array Processing", Prentice Hall, 1988.
[6] Manjunathaiah, M., Megson, G.M., Rajopadhye, S., and

Risset, T., "Uniformization of Affine Dependence
Programs for Parallel Embedded System Design, Proc.
2001 Int. Conf. Parallel Proc. (ICPP 2001),pp.205-213.

[7] Moldevan, D. I., "Parallel Processing", Kaufmann, 1993.
[8] Moreno, J. and Lang, T., "Matrix Computations on

Systolic-Type Arrays," Kluwer Publishers, 1992.
[9] Nash, J.G.and Hansen, S., "Modified Faddeeva Algorithm

for Concurrent Execution of Linear Algebraic
Operations," IEEE Trans. Computers, Feb.1988, pp.129.

[10] Nash, J. G., "Constraint Directed CAD Tool For
Automatic Latency-Optimal Implementation of 1D and 2D
Fourier Transforms", Proc. SPIE, Boston, July 29, 2002,
and www.centar.net

[11] Quinton, P. and Robert, Y., "Systolic Algorithms and
Architectures", Prentice Hall 1991.

[12] Roychowdhury, V.P, "Derivation, Extensions and Parallel
Implementations of Regular Iterative Algorithms," Ph.D
Thesis, Stanford, 1989.

[13] Roychowdhury, V.P., Rao, S.K., Thiele, L., Kailath,
T.,"On the Localization of Algorithms for VLSI Processor
Arrays", VLSI Signal Processing III, Ed. by R.W.
Brodersen and H.Moscovitz,IEEE Press 1988,pp.459-470.

[14] Rajopadhye, S.V. and Fujimoto, R.M., "Automating the
Design of Systolic Arrays," Integration, the VLSI Journal
9, (1990), Elsevier Science Pub., pp.225-242.

[15] Schreiber, R., et. al., "High-Level Synthesis of
Nonprogrammable Hardware Accelerators", Proc. IEEE
Int. Conf. Application Specific Systems, Architectures,
and Process, (ASAP 2000).

[16] Stone, A. and Manolakos, E., "DG2VHDL: A Toll to
Facilitate the High Level Synthesis of Parallel Processing
Array Architectures", J. VLSI Signal Processing Systems,
Vol.24, 99-120 (2000).

[17] Van Swaaij, M. , Catthoor, F., and DeMan, H.,
"Nonlinear Transforms for High Level Regular Array
Synthesis: A Case Study," J. VLSI Signal Processing, vol.
4., pp. 259-268, 1992.

	Introduction
	Related Work
	Spade Description
	Introduction
	Space-Time Mapping
	Solution search
	Input

	Faddeev Design Example
	Algorithm Derivation
	Faddeev Algorithm Design Results
	Minimum Area Array Designs
	Maximum Regularity Design
	Single Divider Implementation

	Space-time graphical output
	Acknowledgements
	References

